1
|
Yesildemir O, Celik MN. The Effect of Various Environmental Pollutants on the Reproductive Health in Children: A Brief Review of the Literature. Curr Nutr Rep 2024; 13:382-392. [PMID: 38935249 PMCID: PMC11327209 DOI: 10.1007/s13668-024-00557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW Environmental pollutants in air, water, soil, and food are a significant concern due to their potential adverse effects on fetuses, newborns, babies, and children. These chemicals, which pass to fetuses and babies through trans-placental transfer, breast milk, infant formula, dermal transfer, and non-nutritive ingestion, can cause health problems during childhood. This review aims to discuss how exposure to various environmental pollutants in early life stages can disrupt reproductive health in children. RECENT FINDINGS Environmental pollutants can affect Leydig cell proliferation and differentiation, decreasing testosterone production throughout life. This may result in cryptorchidism, hypospadias, impaired semen parameters, and reduced fertility. Although many studies on female reproductive health cannot be interpreted to support causal relationships, exposure to pollutants during critical windows may subsequently induce female reproductive diseases, including early or delayed puberty, polycystic ovary syndrome, endometriosis, and cancers. There is growing evidence that fetal and early-life exposure to environmental pollutants could affect reproductive health in childhood. Although diet is thought to be the primary route by which humans are exposed to various pollutants, there are no adopted nutritional interventions to reduce the harmful effects of pollutants on children's health. Therefore, understanding the impact of environmental contaminants on various health outcomes may inform the design of future human nutritional studies.
Collapse
Affiliation(s)
- Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, 16059, Bursa, Türkiye.
| | - Mensure Nur Celik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayis University, 55200, Samsun, Türkiye
| |
Collapse
|
2
|
Visser N, Silva AV, Tarvainen I, Damdimopoulos A, Davey E, Roos K, Björvang RD, Kallak TK, Lager S, Lavogina D, Laws M, Piltonen T, Salumets A, Flaws JA, Öberg M, Velthut-Meikas A, Damdimopoulou P, Olovsson M. Epidemiologically relevant phthalates affect human endometrial cells in vitro through cell specific gene expression changes related to the cytoskeleton and mitochondria. Reprod Toxicol 2024; 128:108660. [PMID: 38992643 DOI: 10.1016/j.reprotox.2024.108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Phthalates are endocrine disrupting chemicals (EDCs) found in common consumer products such as soft plastics and cosmetics. Although the knowledge regarding the adverse effects of phthalates on female fertility are accumulating, information on the hormone sensitive endometrium is still scarce. Here, we studied the effects of phthalates on endometrial cell proliferation and gene expression. Human endometrial primary epithelial and stromal cells were isolated from healthy fertile-aged women (n=3), and were compared to endometrial cell lines T-HESC and Ishikawa. Three different epidemiologically relevant phthalate mixtures were used, defined by urine samples in the Midlife Women Health Study (MWHS) cohort. Mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) was used as a single phthalate control. Cells were harvested for proliferation testing and transcriptomic analyses after 24 h exposure. Even though all cell models responded differently to the phthalate exposures, many overlapping differentially expressed genes (DEGs, FDR<0.1), related to cell adhesion, cytoskeleton and mitochondria were found in all cell types. The qPCR analysis confirmed that MEHHP significantly affected cell adhesion gene vinculin (VCL) and NADH:ubiquinone oxidoreductase subunit B7 (NDUFB7), important for oxidative phosphorylation. Benchmark dose modelling showed that MEHHP had significant concentration-dependent effects on cytoskeleton gene actin-beta (ACTB). In conclusion, short 24 h phthalate exposures significantly altered gene expression cell-specifically in human endometrial cells, with six shared DEGs. The mixture effects were similar to those of MEHHP, suggesting MEHHP could be the main driver in the mixture. Impact of phthalate exposures on endometrial functions including receptivity should be addressed.
Collapse
Affiliation(s)
- Nadja Visser
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Antero Vieira Silva
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ilari Tarvainen
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm 17177, Sweden; Department of Obstetrics and Gynaecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki 00029 HUS, Finland
| | - Anastasios Damdimopoulos
- Bioinformatics and Expression Analysis Core Facility, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Eva Davey
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Kristine Roos
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Nova Vita Clinic, Tallinn, Estonia
| | - Richelle D Björvang
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden
| | | | - Susanne Lager
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Darja Lavogina
- Competence Centre on Health Technologies, Tartu, Estonia; Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Mary Laws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Terhi Piltonen
- Department of Obstetrics and Gynaecology, Research Unit of Clinical Medicine, Medical Research Centre, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Andres Salumets
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm 17177, Sweden; Competence Centre on Health Technologies, Tartu, Estonia; Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Mattias Öberg
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agne Velthut-Meikas
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm 17177, Sweden
| | - Matts Olovsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Ribeiro B, Mariana M, Lorigo M, Oliani D, Ramalhinho AC, Cairrao E. Association between the Exposure to Phthalates and the Risk of Endometriosis: An Updated Review. Biomedicines 2024; 12:1932. [PMID: 39200395 PMCID: PMC11352157 DOI: 10.3390/biomedicines12081932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/02/2024] Open
Abstract
Endometriosis is a chronic gynecological disease, primarily associated with pelvic pain and infertility, that affects approximately 10% of the women of reproductive age. Estrogen plays a central role in endometriosis, and there is growing evidence that endocrine disruptors, such as phthalates, may contribute to its development. This review aimed to determine whether there is a causal relationship between phthalate exposure and the development of endometriosis, as well as the possible effects of phthalates on fertility, by analyzing epidemiological data. After a literature search with a combination of specific terms on this topic, we found that although there are limitations to the current studies, there is a clear association between phthalate exposure and endometriosis. Phthalates can interfere with the cellular processes of the endometrium; specifically, they can bind to PPAR and ER-α and activate TGF-β, promoting different signaling cascades that regulate the expression of specific target genes. This may lead to inflammation, invasion, cytokine alteration, increased oxidative stress, and impaired cell viability and proliferation, culminating in endometriosis. Nevertheless, future research is important to curb the progression and development of endometriosis, and strategies for prevention, diagnosis, and treatment are a priority. In this regard, public policies and recommendations to reduce exposure to phthalates and other endocrine disruptors should be promptly implemented.
Collapse
Affiliation(s)
- Bárbara Ribeiro
- Faculty of Health Sciences (FCS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal; (B.R.); (M.L.)
| | - Melissa Mariana
- Health Sciences Research Centre (CICS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal;
- Faculty of Sciences (FC), University of Beira Interior (UBI), 6201-001 Covilhã, Portugal
| | - Margarida Lorigo
- Faculty of Health Sciences (FCS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal; (B.R.); (M.L.)
- Health Sciences Research Centre (CICS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal;
| | - Denise Oliani
- Assisted Reproduction Laboratory, Academic Hospital of Cova da Beira, 6200-251 Covilhã, Portugal;
- São José do Rio Preto School of Medicine, Gynaecology and Obstetrics, São José do Rio Preto 15090-000, Brazil
- Cova da Beira Local Unit of Health, 6200-251 Covilhã, Portugal
| | - Ana Cristina Ramalhinho
- Faculty of Health Sciences (FCS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal; (B.R.); (M.L.)
- Health Sciences Research Centre (CICS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal;
- Cova da Beira Local Unit of Health, 6200-251 Covilhã, Portugal
| | - Elisa Cairrao
- Faculty of Health Sciences (FCS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal; (B.R.); (M.L.)
- Health Sciences Research Centre (CICS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal;
| |
Collapse
|
4
|
Martínez-Ibarra A, Cerbón M, Martínez-Razo LD, Morales-Pacheco M, Torre-Villalvazo I, Kawa S, Rodríguez-Dorantes M. Impact of DEHP exposure on female reproductive health: Insights into uterine effects. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104391. [PMID: 38367918 DOI: 10.1016/j.etap.2024.104391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Several endocrine disrupting compounds released from plastics, including polyfluoroalkyl substances, bisphenols, flame retardants, phthalates and others, are of great concern to human health due to their high toxicity. This review discusses the effects of di-(2-ethylhexyl) phthalate (DEHP), the most common member of the phthalate family, on female reproduction. In vitro and in vivo studies link DEHP exposure to impaired hypothalamic-pituitary-ovarian s (HPO) axis function, alteration of steroid-hormone levels and dysregulation of their receptors, and changes in uterine morphophysiology. In addition, high urinary DEPH levels have been associated with several reproductive disorders in women, including endometriosis, fibromyoma, fetal growth restriction and pregnancy loss. These data suggest that DEHP may be involved in the pathophysiology of various female reproductive diseases. Therefore, exposure to these compounds should be considered a concern in clinician surveillance practices for women at reproductive age and should be regulated to protect their health and that of their progeny.
Collapse
Affiliation(s)
| | - Marco Cerbón
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | | | - Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| | - Iván Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Simón Kawa
- Dirección General del Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico.
| | | |
Collapse
|
5
|
Wang J, Zhao C, Feng J, Sun P, Zhang Y, Han A, Zhang Y, Ma H. Advances in understanding the reproductive toxicity of endocrine-disrupting chemicals in women. Front Cell Dev Biol 2024; 12:1390247. [PMID: 38606320 PMCID: PMC11007058 DOI: 10.3389/fcell.2024.1390247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Recently, there has been a noticeable increase in disorders of the female reproductive system, accompanied by a rise in adverse pregnancy outcomes. This trend is increasingly being linked to environmental pollution, particularly through the lens of Endocrine Disrupting Chemicals (EDCs). These external agents disrupt natural processes of hormones, including synthesis, metabolism, secretion, transport, binding, as well as elimination. These disruptions can significantly impair human reproductive functions. A wealth of animal studies and epidemiological research indicates that exposure to toxic environmental factors can interfere with the endocrine system's normal functioning, resulting in negative reproductive outcomes. However, the mechanisms of these adverse effects are largely unknown. This work reviews the reproductive toxicity of five major environmental EDCs-Bisphenol A (BPA), Phthalates (PAEs), Triclocarban Triclosan and Disinfection Byproducts (DBPs)-to lay a foundational theoretical basis for further toxicological study of EDCs. Additionally, it aims to spark advancements in the prevention and treatment of female reproductive toxicity caused by these chemicals.
Collapse
Affiliation(s)
- Jinguang Wang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Chunwu Zhao
- Gastrointestinal Surgery Center of Weifang People’s Hospital, Weifang, China
| | - Jie Feng
- Gynecology and Obstetrics Department, Fangzi District People’s Hospital, Weifang, China
| | - Pingping Sun
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Yuhua Zhang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Ailing Han
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Yuemin Zhang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Huagang Ma
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| |
Collapse
|
6
|
Long C, Li Z, Liang S, Yao S, Zhu S, Lu L, Cao R, Chen Y, Huang Y, Ma Y, Lei W, Liang X. Resveratrol reliefs DEHP-induced defects during human decidualization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114931. [PMID: 37121080 DOI: 10.1016/j.ecoenv.2023.114931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/22/2023] [Accepted: 04/16/2023] [Indexed: 05/22/2023]
Abstract
Di-(2-Ethylhexyl) phthalate (DEHP) is widely used as an additive in many plastic products. Studies have revealed that DEHP persistent exposure can affect embryonic development and lead to adverse female reproductive disorders. The establishment of pregnancy involves extensive changes in the endometrial tissue, including massive extracellular matrix (ECM) remodeling. Decidualization of the endometrium provides a suitable environment for subsequent growth by causing changes in the morphology of the uterine stromal cells, is a key process in human pregnancy. Resveratrol (RSV) is a natural polyphenolic plant antitoxin with a wide range of pharmacological effects. Growing evidence indicates that RSV has therapeutic effects on certain female reproductive disorders. In this study, the effect of DEHP on cell viability was investigated by cell proliferation assay. Cell decidualization was induced in vitro, and the downregulation of molecules associated with decidualization was confirmed through quantitative real-time PCR and western blot analysis. Immunofluorescence analysis revealed alteration in cell morphology, and found that administration of DEHP sufficiently induced ERα entry into the nucleus. The effect of DEHP on cells was fully verified by RNA-seq analysis. Interestingly, an upregulation of decidual molecules was observed after rescue with RSV, which was confirmed by RNA-seq transcriptome analysis and quantitative real-time PCR assay. Additionally, the expression of ECM remodeling-related genes was significantly restored by RSV administration. The study revealed the potential mechanisms of DEHP-induced decidualization defects and the functional relieving roles of RSV while providing a perspective therapeutic candidate for alleviating the DEHP-induced deficiencies in decidualization.
Collapse
Affiliation(s)
- Chenghong Long
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhenru Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shijin Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Sitong Yao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Songqi Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lin Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Rui Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yingni Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuxin Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongjiang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou 215000, China.
| | - Xiaohuan Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Weng X, Zhu Q, Liao C, Jiang G. Cumulative Exposure to Phthalates and Their Alternatives and Associated Female Reproductive Health: Body Burdens, Adverse Outcomes, and Underlying Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37196176 DOI: 10.1021/acs.est.3c00823] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The global birth rate has recently shown a decreasing trend, and exposure to environmental pollutants has been identified as a potential factor affecting female reproductive health. Phthalates have been widely used as plasticizers in plastic containers, children's toys, and medical devices, and their ubiquitous presence and endocrine-disrupting potential have already raised particular concerns. Phthalate exposure has been linked to various adverse health outcomes, including reproductive diseases. Given that many phthalates are gradually being banned, a growing number of phthalate alternatives are becoming popular, such as di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH), di(2-ethylhexyl) adipate (DEHA), and di(2-ethylhexyl) terephthalate (DEHTP), and they are beginning to have a wide range of environmental effects. Studies have shown that many phthalate alternatives may disrupt female reproductive function by altering the estrous cycle, causing ovarian follicular atresia, and prolonging the gestational cycle, which raises growing concerns about their potential health risks. Herein, we summarize the effects of phthalates and their common alternatives in different female models, the exposure levels that influence the reproductive system, and the effects on female reproductive impairment, adverse pregnancy outcomes, and offspring development. Additionally, we scrutinize the effects of phthalates and their alternatives on hormone signaling, oxidative stress, and intracellular signaling to explore the underlying mechanisms of action on female reproductive health, because these chemicals may affect reproductive tissues directly or indirectly through endocrine disruption. Given the declining global trends of female reproductive capacity and the potential ability of phthalates and their alternatives to negatively impact female reproductive health, a more comprehensive study is needed to understand their effects on the human body and their underlying mechanisms. These findings may have an important role in improving female reproductive health and in turn decreasing the number of complications during pregnancy.
Collapse
Affiliation(s)
- Xueyu Weng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Sree CG, Buddolla V, Lakshmi BA, Kim YJ. Phthalate toxicity mechanisms: An update. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109498. [PMID: 36374650 DOI: 10.1016/j.cbpc.2022.109498] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Phthalates are one of the most widely used plasticizers in polymer products, and they are increasingly being exposed to people all over the world, generating health concerns. Phthalates are often used as excipients in controlled-release capsules and enteric coatings, and patients taking these drugs may be at risk. In both animals and human, phthalates are mainly responsible for testicular dysfunction, ovarian toxicity, reduction in steroidogenesis. In this regard, for a better understanding of the health concerns corresponding to phthalates and their metabolites, still more research is required. Significantly, multifarious forms of phthalates and their biomedical effects are need to be beneficial to investigate in the various tissues or organs. Based on these investigations, researchers can decipher their toxicity concerns and related mechanisms in the body after phthalate's exposure. This review summarizes the chemical interactions, mechanisms, and their biomedical applications of phthalates in animals and human.
Collapse
Affiliation(s)
- Chendruru Geya Sree
- Dr. Buddolla's Institute of Life Sciences, Tirupati 517503, Andhra Pradesh, India
| | - Viswanath Buddolla
- Dr. Buddolla's Institute of Life Sciences, Tirupati 517503, Andhra Pradesh, India
| | - Buddolla Anantha Lakshmi
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea.
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
9
|
Gonzalez-Martin R, Palomar A, Medina-Laver Y, Quiñonero A, Domínguez F. Endometrial Cells Acutely Exposed to Phthalates In Vitro Do Not Phenocopy Endometriosis. Int J Mol Sci 2022; 23:ijms231911041. [PMID: 36232341 PMCID: PMC9569573 DOI: 10.3390/ijms231911041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022] Open
Abstract
Environmental factors that have been linked to an increased endometriosis risk include exposure to di-(2-ethylhexyl)-phthalate (DEHP), an endocrine disruptor. This study aims to investigate whether DEHP in vitro exposure in primary endometrial stromal cells (EnSC), primary endometrial epithelial cells (EnEC), and the human endometrial adenocarcinoma cell line Ishikawa properly mimics alterations described in the eutopic endometrium of women with endometriosis. Primary EnSC and EnEC, isolated from six fertile egg donors, and Ishikawa cells were exposed to DEHP (0.1, 1, and 10 µM) and were assessed for viability, endometriosis markers (IL-6, VEGF-A, HOXA10, EZH2, and LSD1), steroid receptor gene expressions (ER-1, ER-2, PR-T, PR-B, and PGRMC1), and invasive capacity. Viability after 72 h of DEHP exposure was not significantly affected. None of the endometriosis markers studied were altered after acute DEHP exposure, nor was the expression of steroid receptors. The invasive capacity of EnSC was significantly increased after 10 µM of DEHP exposure. In conclusion, acute DEHP exposure in primary endometrial cells does not fully phenocopy the changes in the viability, expression of markers, or steroidal receptors described in endometriosis. However, the significant increase in EnSC invasiveness observed after DEHP exposure could be a link between DEHP exposure and increased endometriosis likelihood.
Collapse
|
10
|
EL-Desouky NA, Elyamany M, Hanon AF, Atef A, Issak M, Taha SHN, Hussein RF. Association of Phthalate Exposure with Endometriosis and Idiopathic Infertility in Egyptian Women. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Phthalates are compounds found in medical supplies, cellophane wraps, beverage containers, metal can linings, and other products. They have the potential to be significant endocrine disruptors. In experimental animals, thereby affecting their reproductive capacity. Endometriosis is a gynecological condition defined by ectopic endometrial glands and stromal development. Exposure to phthalates has been linked to the development of endometriosis in numerous studies. The dangers of phthalates to women’s reproductive health and fertility have been widely reported.
AIM: So far, the relationship between phthalates and infertility is not proven so we decided to see if there was a link between the urine phthalate metabolite levels and endometriosis or idiopathic infertility in Egyptian women.
METHODS: Our research was carried out at the infertility outpatient clinic of the Faculty of Medicine of Cairo University. It included 100 female subjects aged 18−40-years-old. Group A (idiopathic infertility; n = 40), Group B (endometriosis; n = 40), and Group C (control; n = 20) were the three age-matched groups that were studied. Using high-performance liquid chromatography (HPLC), the urine levels of mono-2-ethylhexyl phthalate (MEHP) were quantified.
RESULTS: The comparison between the study groups has revealed statistically significant differences regarding the urine MEHP levels between Groups A and B. An analysis of the urine MEHP levels in the study Groups A and B has also revealed that the significantly higher urinary MEHP levels are correlated with the use of dietary plastic containers, the use of cosmetics, and the patients’ estrogen levels. Moreover, the urinary MEHP levels of Group A were associated with a history of abortions.
CONCLUSIONS: Higher levels of urinary MEHP are positively associated with female reproductive disorders, specifically endometriosis, idiopathic infertility, and abortion.
Collapse
|
11
|
Basso CG, de Araujo-Ramos AT, Martino-Andrade AJ. Exposure to phthalates and female reproductive health: a literature review. Reprod Toxicol 2022; 109:61-79. [DOI: 10.1016/j.reprotox.2022.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022]
|
12
|
Vandenberg LN, Pelch KE. Systematic Review Methodologies and Endocrine Disrupting Chemicals: Improving Evaluations of the Plastic Monomer Bisphenol A. Endocr Metab Immune Disord Drug Targets 2021; 22:748-764. [PMID: 34610783 DOI: 10.2174/1871530321666211005163614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/25/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endocrine disrupting chemicals (EDCs) are found in plastics, personal care products, household items, and other consumer goods. Risk assessments are intended to characterize a chemical's hazards, identify the doses at which adverse outcomes are observed, quantify exposure levels, and then compare these doses to determine the likelihood of risk in a given population. There are many problems with risk assessments for EDCs, allowing people to be exposed to levels that are later associated with serious health outcomes in epidemiology studies. OBJECTIVE In this review, we examine issues that affect the evaluation of EDCs in risk assessments (e.g., use of insensitive rodent strains and absence of disease-oriented outcomes in hazard assessments; inadequate exposure assessments). We then review one well-studied chemical, Bisphenol A (BPA; CAS #80-05-7) an EDC found in plastics, food packaging, and other consumer products. More than one hundred epidemiology studies suggest associations between BPA exposures and adverse health outcomes in environmentally exposed human populations. FINDINGS We present support for the use of systematic review methodologies in the evaluation of BPA and other EDCs. Systematic reviews would allow studies to be evaluated for their reliability and risk of bias. They would also allow all data to be used in risk assessments, which is a requirement for some regulatory agencies. CONCLUSION Systematic review methodologies can be used to improve evaluations of BPA and other EDCs. Their use could help to restore faith in risk assessments and ensure that all data are utilized in decision-making. Regulatory agencies are urged to conduct transparent, well-documented and proper systematic reviews for BPA and other EDCs.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, United States
| | | |
Collapse
|