1
|
Shah A, Baiseitova A, Lee G, Kim JH, Park KH. Analogues of Dihydroflavonol and Flavone as Protein Tyrosine Phosphatase 1B Inhibitors from the Leaves of Artocarpus elasticus. ACS OMEGA 2024; 9:9053-9062. [PMID: 38434867 PMCID: PMC10905692 DOI: 10.1021/acsomega.3c07471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is one of the target enzymes whose disruption leads to obesity and diabetes. A series of PTP1B inhibitors were isolated from the leaves of Artocarpus elasticus, used in traditional medicines for diabetes. The isolated inhibitors (1-13), including two new compounds (1 and 2), consisted of dihydroflavonols and flavones. The structural requirements for the PTP1B inhibitory mode and potency were revealed in both skeletons. The two highest PTP1B inhibitory properties were dihydroflavonol 1 and flavone 6 analogs with IC50 values of 0.17 and 0.79 μM, respectively. The stereochemistry also affected inhibitory potencies: trans isomer 1 (IC50= 0.17 μM) vs cis isomer 2 (IC50= 2.24 μM). Surprisingly, the dihydroflavonol and flavone glycosides (11 and 13) displayed potent inhibition with IC50s of 2.39 and 0.22 μM, respectively. Furthermore, competitive inhibitor 1 was applied to time-dependence experiments as a simple slow-binding inhibitor with parameters of Kiapp = 0.064103 μM, k3 = 0.2262 μM-1 min-1, and k4 = 0.0145 min-1. The binding affinities by using the fluorescence quenching experiment were highly correlated with inhibitory potencies: 1 (IC50= 0.17 μM, KSV = 0.4375 × 105 L·mol-1) vs 3 (IC50= 17.79 μM, KSV = 0.0006 × 105 L·mol-1). The specific binding interactions were estimated at active and allosteric sites according to the inhibitory mode by molecular docking.
Collapse
Affiliation(s)
- Abdul
Bari Shah
- Division
of Applied Life Science (BK21 Four), IALS, Gyeongsang National University, Jinju 52828, Republic
of Korea
| | - Aizhamal Baiseitova
- Division
of Applied Life Science (BK21 Four), IALS, Gyeongsang National University, Jinju 52828, Republic
of Korea
| | - Gihwan Lee
- Division
of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Jeong Ho Kim
- Division
of Applied Life Science (BK21 Four), IALS, Gyeongsang National University, Jinju 52828, Republic
of Korea
| | - Ki Hun Park
- Division
of Applied Life Science (BK21 Four), IALS, Gyeongsang National University, Jinju 52828, Republic
of Korea
| |
Collapse
|
2
|
Govindaraj RG, Thangapandian S, Schauperl M, Denny RA, Diller DJ. Recent applications of computational methods to allosteric drug discovery. Front Mol Biosci 2023; 9:1070328. [PMID: 36710877 PMCID: PMC9877542 DOI: 10.3389/fmolb.2022.1070328] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
Interest in exploiting allosteric sites for the development of new therapeutics has grown considerably over the last two decades. The chief driving force behind the interest in allostery for drug discovery stems from the fact that in comparison to orthosteric sites, allosteric sites are less conserved across a protein family, thereby offering greater opportunity for selectivity and ultimately tolerability. While there is significant overlap between structure-based drug design for orthosteric and allosteric sites, allosteric sites offer additional challenges mostly involving the need to better understand protein flexibility and its relationship to protein function. Here we examine the extent to which structure-based drug design is impacting allosteric drug design by highlighting several targets across a variety of target classes.
Collapse
Affiliation(s)
- Rajiv Gandhi Govindaraj
- Computational Chemistry, HotSpot Therapeutics Inc., Boston, MA, United States,*Correspondence: Rajiv Gandhi Govindaraj,
| | | | - Michael Schauperl
- Computational Chemistry, HotSpot Therapeutics Inc., Boston, MA, United States
| | | | - David J. Diller
- Computational Chemistry, HotSpot Therapeutics Inc., Boston, MA, United States
| |
Collapse
|
3
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
4
|
Elhassan RM, Hou X, Fang H. Recent advances in the development of allosteric protein tyrosine phosphatase inhibitors for drug discovery. Med Res Rev 2021; 42:1064-1110. [PMID: 34791703 DOI: 10.1002/med.21871] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/26/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023]
Abstract
Protein tyrosine phosphatases (PTPs) superfamily catalyzes tyrosine de-phosphorylation which affects a myriad of cellular processes. Imbalance in signal pathways mediated by PTPs has been associated with development of many human diseases including cancer, metabolic, and immunological diseases. Several compelling evidence suggest that many members of PTP family are novel therapeutic targets. However, the clinical development of conventional PTP-based active-site inhibitors originally was hampered by the poor selectivity and pharmacokinetic properties. In this regard, PTPs has been widely dismissed as "undruggable." Nonetheless, allosteric modulation has become increasingly an influential and alternative approach that can be exploited for drug development against PTPs. Unlike active-site inhibitors, allosteric inhibitors exhibit a remarkable target-selectivity, drug-likeness, potency, and in vivo activity. Intriguingly, there has been a high interest in novel allosteric PTPs inhibitors within the last years. In this review, we focus on the recent advances of allosteric inhibitors that have been explored in drug discovery and have shown an excellent result in the development of PTPs-based therapeutics. A special emphasis is placed on the structure-activity relationship and molecular mechanistic studies illustrating applications in chemical biology and medicinal chemistry.
Collapse
Affiliation(s)
- Reham M Elhassan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
5
|
Thiazole-based and thiazolidine-based protein tyrosine phosphatase 1B inhibitors as potential anti-diabetes agents. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02668-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Javier GM. Computational insight into the selective allosteric inhibition for PTP1B versus TCPTP: a molecular modelling study. J Biomol Struct Dyn 2020; 39:5399-5410. [PMID: 32643532 DOI: 10.1080/07391102.2020.1790421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
All over the world, diabetes mellitus type 2 has spread as a problematic pandemic. Despite currently available treatments, approved drugs still show undesirable side effects and loss of efficacy or target symptoms instead of causes. Protein tyrosine phosphatase 1B (PTP1B), since its discovery, has emerged as a very promising target against this disease. Although the information regarding the enzyme is immense, little is known about the selectivity between this enzyme and its closest homologue, lymphocyte T tyrosine phosphatase (TCPTP), which is responsible for complicated side effects. In this study, on the basis of different computational approaches, we are able to highlight the importance of a phenylalanine residue located in PTP1B, but not in TCPTP, as a crucial hotspot that causes selectivity and stability for the whole ligand bound system. These results not only allow to explain the selectivity determinants of PTP1B but also provide a useful guide for the design of new allosteric inhibitors. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Garcia-Marin Javier
- Facultad de Farmacia, Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Facultad de Farmacia, Instituto de Investigación Química Andrés M. del Río, Universidad de Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
7
|
SarathKumar B, Lakshmi BS. In silico investigations on the binding efficacy and allosteric mechanism of six different natural product compounds towards PTP1B inhibition through docking and molecular dynamics simulations. J Mol Model 2019; 25:272. [PMID: 31451955 DOI: 10.1007/s00894-019-4172-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 08/16/2019] [Indexed: 01/07/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a major negative regulator of both the insulin and leptin receptor phosphorylation which impacts insulin sensitivity and hence is a major therapeutic target for the treatment of type 2 diabetes and obesity. Identification of PTP1B active site inhibitors has proven to be difficult with none of them clearing the phase II clinical trials. Since the conventional methods of targeting the active site of PTP1B have failed to bring out effective PTP1B inhibitors as potential drugs, recent studies are focussing on identification of potential allosteric inhibitors of PTP1B with better specificity and activity. A complete understanding of the molecular features dynamically involved for allosteric site inhibition is still uncertain, and hence, this study is aimed at evaluating the allosteric effectiveness of six natural compounds isolated from medicinal plants which showed in vitro antidiabetic activity along with PTP1B inhibition. The allosteric binding and inhibition of these compounds are studied using computational methods such as molecular docking, homology modelling and molecular dynamics simulations for a timescale of 100 ns. The molecular dynamics simulations of native PTP1B, along with the modelled allosteric α-7 helix, for a timescale of 100 ns, revealed the spontaneous transition of the native PTP1B from open WPD loop (active) to closed WPD loop (inactive) conformations during the simulations. Similar dynamics was observed in the presence of the active site substrate pTyr (phosphotyrosine), whereas this transition was inhibited in the presence of the compounds at the allosteric site. Results of molecular dynamics simulations and principal component analysis reveal that the hindrance to WPD loop was mediated through structural interactions between the allosteric α-helical triad with Loop11 and WPD loop. The MM-PBSA (Molecular Mechanics - Poisson Boltzmann with Surface Area solvation) binding energy results along with H-bonding analysis show the possible allosteric inhibition of Aloe emodin glycoside (AEG), 3β-taraxerol (3BT), chlorogenic acid (CGA) and cichoric acid (CHA) to be higher in comparison with (3β)-stigmast-5-en-3-ol (SGS) and methyl lignocerate (MLG). The interaction analysis was further validated by scoring the allosteric complexes before and after MD simulations using Glide. These findings on spontaneous PTP1B fluctuations and the allosteric interactions provide a better insight into the role of PTP1B fluctuations in impacting the binding energy of allosteric inhibitors towards optimal drug designing for PTP1B. Graphical abstract.
Collapse
Affiliation(s)
- Baskaran SarathKumar
- Department of Biotechnology, Anna University, Chennai, Tamil Nadu, 600 025, India
| | | |
Collapse
|
8
|
Safarizadeh H, Garkani-Nejad Z. Investigation of MI-2 analogues as MALT1 inhibitors to treat of diffuse large B-Cell lymphoma through combined molecular dynamics simulation, molecular docking and QSAR techniques and design of new inhibitors. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Shinde RN, Kumar GS, Eqbal S, Sobhia ME. Screening and identification of potential PTP1B allosteric inhibitors using in silico and in vitro approaches. PLoS One 2018; 13:e0199020. [PMID: 29912965 PMCID: PMC6005499 DOI: 10.1371/journal.pone.0199020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/12/2018] [Indexed: 12/25/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a validated therapeutic target for Type 2 diabetes due to its specific role as a negative regulator of insulin signaling pathways. Discovery of active site directed PTP1B inhibitors is very challenging due to highly conserved nature of the active site and multiple charge requirements of the ligands, which makes them non-selective and non-permeable. Identification of the PTP1B allosteric site has opened up new avenues for discovering potent and selective ligands for therapeutic intervention. Interactions made by potent allosteric inhibitor in the presence of PTP1B were studied using Molecular Dynamics (MD). Computationally optimized models were used to build separate pharmacophore models of PTP1B and TCPTP, respectively. Based on the nature of interactions the target residues offered, a receptor based pharmacophore was developed. The pharmacophore considering conformational flexibility of the residues was used for the development of pharmacophore hypothesis to identify potentially active inhibitors by screening large compound databases. Two pharmacophore were successively used in the virtual screening protocol to identify potential selective and permeable inhibitors of PTP1B. Allosteric inhibition mechanism of these molecules was established using molecular docking and MD methods. The geometrical criteria values confirmed their ability to stabilize PTP1B in an open conformation. 23 molecules that were identified as potential inhibitors were screened for PTP1B inhibitory activity. After screening, 10 molecules which have good permeability values were identified as potential inhibitors of PTP1B. This study confirms that selective and permeable inhibitors can be identified by targeting allosteric site of PTP1B.
Collapse
Affiliation(s)
- Ranajit Nivrutti Shinde
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - G. Siva Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Shahbaz Eqbal
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - M. Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| |
Collapse
|
10
|
Jung HJ, Seong SH, Ali MY, Min BS, Jung HA, Choi JS. α-Methyl artoflavanocoumarin from Juniperus chinensis exerts anti-diabetic effects by inhibiting PTP1B and activating the PI3K/Akt signaling pathway in insulin-resistant HepG2 cells. Arch Pharm Res 2017; 40:1403-1413. [PMID: 29177868 DOI: 10.1007/s12272-017-0992-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/19/2017] [Indexed: 01/04/2023]
Abstract
Diabetes mellitus is one of the greatest global health issues and much research effort continues to be directed toward identifying novel therapeutic agents. Insulin resistance is a challenging integrally related topic and molecules capable of overcoming it are of considerable therapeutic interest in the context of type 2 diabetes mellitus (T2DM). Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signaling transduction and is regarded a novel therapeutic target in T2DM. Here, we investigated the inhibitory effect of α-methyl artoflavanocoumarin (MAFC), a natural flavanocoumarin isolated from Juniperus chinensis, on PTP1B in insulin-resistant HepG2 cells. MAFC was found to potently inhibit PTP1B with an IC50 of 25.27 ± 0.14 µM, and a kinetics study revealed MAFC is a mixed type PTP1B inhibitor with a K i value of 13.84 µM. Molecular docking simulations demonstrated MAFC can bind to catalytic and allosteric sites of PTP1B. Furthermore, MAFC significantly increased glucose uptake and decreased the expression of PTP1B in insulin-resistant HepG2 cells, down-regulated the phosphorylation of insulin receptor substrate (IRS)-1 (Ser307), and dose-dependently enhanced the protein levels of IRS-1, phosphorylated phosphoinositide 3-kinase (PI3K), Akt, and ERK1. These results suggest that MAFC from J. chinensis has therapeutic potential in T2DM by inhibiting PTP1B and activating insulin signaling pathways.
Collapse
Affiliation(s)
- Hee Jin Jung
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Md Yousof Ali
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Byung-Sun Min
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, 38430, Republic of Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
11
|
Mahapatra MK, Bera K, Singh DV, Kumar R, Kumar M. In silico modelling and molecular dynamics simulation studies of thiazolidine based PTP1B inhibitors. J Biomol Struct Dyn 2017; 36:1195-1211. [PMID: 28393626 DOI: 10.1080/07391102.2017.1317026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) has been identified as a negative regulator of insulin and leptin signalling pathway; hence, it can be considered as a new therapeutic target of intervention for the treatment of type 2 diabetes. Inhibition of this molecular target takes care of both diabetes and obesity, i.e. diabestiy. In order to get more information on identification and optimization of lead, pharmacophore modelling, atom-based 3D QSAR, docking and molecular dynamics studies were carried out on a set of ligands containing thiazolidine scaffold. A six-point pharmacophore model consisting of three hydrogen bond acceptor (A), one negative ionic (N) and two aromatic rings (R) with discrete geometries as pharmacophoric features were developed for a predictive 3D QSAR model. The probable binding conformation of the ligands within the active site was studied through molecular docking. The molecular interactions and the structural features responsible for PTP1B inhibition and selectivity were further supplemented by molecular dynamics simulation study for a time scale of 30 ns. The present investigation has identified some of the indispensible structural features of thiazolidine analogues which can further be explored to optimize PTP1B inhibitors.
Collapse
Affiliation(s)
- Manoj Kumar Mahapatra
- a University Institute of Pharmaceutical Sciences, Panjab University , Chandigarh , India
| | - Krishnendu Bera
- b Department of Bioinformatics , Centre for Biological Sciences, Central University of South Bihar , BIT campus, Patna , India
| | - Durg Vijay Singh
- b Department of Bioinformatics , Centre for Biological Sciences, Central University of South Bihar , BIT campus, Patna , India
| | - Rajnish Kumar
- a University Institute of Pharmaceutical Sciences, Panjab University , Chandigarh , India
| | - Manoj Kumar
- a University Institute of Pharmaceutical Sciences, Panjab University , Chandigarh , India
| |
Collapse
|
12
|
Morishita K, Shoji Y, Tanaka S, Fukui M, Ito Y, Kitao T, Ozawa SI, Hirono S, Shirahase H. Novel Non-carboxylate Benzoylsulfonamide-Based Protein Tyrosine Phosphatase 1B Inhibitors with Non-competitive Actions. Chem Pharm Bull (Tokyo) 2017; 65:1144-1160. [DOI: 10.1248/cpb.c17-00635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ko Morishita
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Yoshimichi Shoji
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Shunkichi Tanaka
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Masaki Fukui
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Yuma Ito
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Tatsuya Kitao
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | | | | | - Hiroaki Shirahase
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| |
Collapse
|
13
|
Choi JS, Ali MY, Jung HA, Oh SH, Choi RJ, Kim EJ. Protein tyrosine phosphatase 1B inhibitory activity of alkaloids from Rhizoma Coptidis and their molecular docking studies. JOURNAL OF ETHNOPHARMACOLOGY 2015; 171:28-36. [PMID: 26027757 DOI: 10.1016/j.jep.2015.05.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/10/2015] [Accepted: 05/08/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE Rhizoma Coptidis (the rhizome of Coptis chinensis Franch) has commonly been used for treatment of diabetes mellitus in traditional Chinese medicine due to its blood sugar-lowering properties and therapeutic benefits which highly related to the alkaloids therein. However, a limited number of studies focused on the Coptis alkaloids other than berberine. MATERIALS AND METHODS In the present study, we investigated the anti-diabetic potential of Coptis alkaloids, including berberine (1), epiberberine (2), magnoflorine (3), and coptisine (4), by evaluating the ability of these compounds to inhibit protein tyrosine phosphatase 1B (PTP1B), and ONOO(-)-mediated protein tyrosine nitration. We scrutinized the potentials of Coptis alkaloids as PTP1B inhibitors via enzyme kinetics and molecular docking simulation. RESULTS The Coptis alkaloids 1-4 exhibited remarkable inhibitory activities against PTP1B with the IC50 values of 16.43, 24.19, 28.14, and 51.04 μM, respectively, when compared to the positive control ursolic acid. These alkaloids also suppressed ONOO(-)-mediated tyrosine nitration effectively in a dose dependent manner. In addition, our kinetic study using the Lineweaver-Burk and Dixon plots revealed that 1 and 2 showed a mixed-type inhibition against PTP1B, while 3 and 4 noncompetitively inhibited PTP1B. Moreover, molecular docking simulation of these compounds demonstrated negative binding energies (Autodock 4.0=-6.7 to -7.8 kcal/mol; Fred 2.0=-59.4 to -68.2 kcal/mol) and a high proximity to PTP1B residues, including Phe182 and Asp181 in the WPD loop, Cys215 in the active sites and Tyr46, Arg47, Asp48, Val49, Ser216, Ala217, Gly218, Ile219, Gly220, Arg221 and Gln262 in the pocket site, indicating a higher affinity and tighter binding capacity of these alkaloids for the active site of the enzyme. CONCLUSION Our results clearly indicate the promising anti-diabetic potential of Coptis alkaloids as inhibitors on PTP1B as well as suppressors of ONOO(-)-mediated protein tyrosine nitration, and thus hold promise as therapeutic agents for the treatment of diabetes and related disease.
Collapse
Affiliation(s)
- Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea.
| | - Md Yousof Ali
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Sang Ho Oh
- Korean BioInformation Center (KOBIC), Daejeon 305-806, Republic of Korea
| | - Ran Joo Choi
- Angiogenesis & Chinese Medicine Laboratory, Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Eon Ji Kim
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| |
Collapse
|
14
|
Evaluation of the effect of the chiral centers of Taxol on binding to β-tubulin: A docking and molecular dynamics simulation study. Comput Biol Chem 2015; 56:33-40. [DOI: 10.1016/j.compbiolchem.2015.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 11/17/2022]
|
15
|
Fang J, Wu P, Yang R, Gao L, Li C, Wang D, Wu S, Liu AL, Du GH. Inhibition of acetylcholinesterase by two genistein derivatives: kinetic analysis, molecular docking and molecular dynamics simulation. Acta Pharm Sin B 2014; 4:430-7. [PMID: 26579414 PMCID: PMC4629110 DOI: 10.1016/j.apsb.2014.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 08/27/2014] [Accepted: 09/24/2014] [Indexed: 01/14/2023] Open
Abstract
In this study two genistein derivatives (G1 and G2) are reported as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and differences in the inhibition of AChE are described. Although they differ in structure by a single methyl group, the inhibitory effect of G1 (IC50=264 nmol/L) on AChE was 80 times stronger than that of G2 (IC50=21,210 nmol/L). Enzyme-kinetic analysis, molecular docking and molecular dynamics (MD) simulations were conducted to better understand the molecular basis for this difference. The results obtained by kinetic analysis demonstrated that G1 can interact with both the catalytic active site and peripheral anionic site of AChE. The predicted binding free energies of two complexes calculated by the molecular mechanics/generalized born surface area (MM/GBSA) method were consistent with the experimental data. The analysis of the individual energy terms suggested that a difference between the net electrostatic contributions (ΔEele+ΔGGB) was responsible for the binding affinities of these two inhibitors. Additionally, analysis of the molecular mechanics and MM/GBSA free energy decomposition revealed that the difference between G1 and G2 originated from interactions with Tyr124, Glu292, Val294 and Phe338 of AChE. In conclusion, the results reveal significant differences at the molecular level in the mechanism of inhibition of AChE by these structurally related compounds.
Collapse
Key Words
- ACh, acetylcholine
- AChE, acetylcholinesterase
- AChEIs, acetylcholinesterase inhibitors
- AD, Alzheimer׳s disease
- Acetylcholinesterase (AChE)
- BuChE, butyrylcholinesterase
- BuSCh, S-butyrylthiocholine chloride
- CAS, catalytic active site
- DTNB, 5,5′-dithiobis-(2-nitrobenzoic acid)
- G1, 3-(4-methoxyphenyl)-7-(2-(piperidin-1-yl)ethoxy)-4H-chromen-4-one
- G2, (S)-3-(4-methoxyphenyl)-7-(2-(2-methylpiperidin-1-yl)ethoxy)-4H-chromen-4-one
- GAFF, generalized AMBER force field
- Genistein derivatives
- Kinetics analysis
- MD, molecular dynamics
- MM/GBSA
- MM/GBSA, molecular mechanics/generalized born surface area
- Molecular docking
- Molecular dynamics simulation
- PAS, peripheral anionic site
- PDB, protein data bank
- PME, particle mesh Ewald
- RMSD, root-mean-square deviation
- S-ACh, acetylthiocholine iodide
- SASA, solvent accessible surface area
- iso-OMPA, tetraisopropyl pyrophosphoramide
- ΔEMM, gas-phase interaction energy between receptor and ligand
- ΔEele, electrostatic energy contribution
- ΔEvdw, van der Waals energy contribution
- ΔGGB, polar desolvation energy term
- ΔGSA, nonpolar desolvation energy term
- ΔGexp, experimental binding free energy
- ΔGpred, total binding free energy
- ΔS, conformational entropy contribution
Collapse
|
16
|
Shinde RN, Sobhia ME. Binding and discerning interactions of PTP1B allosteric inhibitors: Novel insights from molecular dynamics simulations. J Mol Graph Model 2013; 45:98-110. [DOI: 10.1016/j.jmgm.2013.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/30/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
|
17
|
Sohn YS, Park C, Lee Y, Kim S, Thangapandian S, Kim Y, Kim HH, Suh JK, Lee KW. Multi-conformation dynamic pharmacophore modeling of the peroxisome proliferator-activated receptor γ for the discovery of novel agonists. J Mol Graph Model 2013; 46:1-9. [PMID: 24104184 DOI: 10.1016/j.jmgm.2013.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022]
Abstract
Activation of the peroxisome proliferator-activated receptor γ (PPARγ) is important for the treatment of type 2 diabetes and obesity through the regulation of glucose metabolism and fatty acid accumulation. Hence, the discovery of novel PPARγ agonists is necessary to overcome these diseases. In this study, a newly developed approach, multi-conformation dynamic pharmacophore modeling (MCDPM), was used for screening candidate compounds that can properly bind PPARγ. Highly populated structures obtained from molecular dynamics (MD) simulations were selected by clustering analysis. Based on these structures, pharmacophore models were generated from the ligand-binding pocket and then validated to check the rationality. Consequently, two hits were retrieved as final candidates by utilizing virtual screening and molecular docking simulations. These compounds can be used in the design of novel PPARγ agonists.
Collapse
Affiliation(s)
- Young-sik Sohn
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Gazha-dong, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kinetics and molecular docking studies of pimarane-type diterpenes as protein tyrosine phosphatase (PTP1B) inhibitors from Aralia continentalis roots. Arch Pharm Res 2013; 36:957-65. [DOI: 10.1007/s12272-013-0131-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/14/2013] [Indexed: 01/29/2023]
|
19
|
Baskaran SK, Goswami N, Selvaraj S, Muthusamy VS, Lakshmi BS. Molecular Dynamics Approach to Probe the Allosteric Inhibition of PTP1B by Chlorogenic and Cichoric Acid. J Chem Inf Model 2012; 52:2004-12. [DOI: 10.1021/ci200581g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Shinde RN, Elizabeth Sobhia M. Geometrical criteria for characterizing open and closed states of WPD-loop in PTP1B. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Sobhia ME, Paul S, Shinde R, Potluri M, Gundam V, Kaur A, Haokip T. Protein tyrosine phosphatase inhibitors: a patent review (2002 – 2011). Expert Opin Ther Pat 2012; 22:125-53. [DOI: 10.1517/13543776.2012.661414] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Seddon G, Lounnas V, McGuire R, van den Bergh T, Bywater RP, Oliveira L, Vriend G. Drug design for ever, from hype to hope. J Comput Aided Mol Des 2012; 26:137-50. [PMID: 22252446 PMCID: PMC3268973 DOI: 10.1007/s10822-011-9519-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/05/2011] [Indexed: 01/28/2023]
Abstract
In its first 25 years JCAMD has been disseminating a large number of techniques aimed at finding better medicines faster. These include genetic algorithms, COMFA, QSAR, structure based techniques, homology modelling, high throughput screening, combichem, and dozens more that were a hype in their time and that now are just a useful addition to the drug-designers toolbox. Despite massive efforts throughout academic and industrial drug design research departments, the number of FDA-approved new molecular entities per year stagnates, and the pharmaceutical industry is reorganising accordingly. The recent spate of industrial consolidations and the concomitant move towards outsourcing of research activities requires better integration of all activities along the chain from bench to bedside. The next 25 years will undoubtedly show a series of translational science activities that are aimed at a better communication between all parties involved, from quantum chemistry to bedside and from academia to industry. This will above all include understanding the underlying biological problem and optimal use of all available data.
Collapse
Affiliation(s)
| | - V. Lounnas
- CMBI, Radboud University Nijmegen Medical Centre, Geert Grooteplein 26–28, 6525 GA Nijmegen, The Netherlands
| | - R. McGuire
- BioAxis Research, Bergse Heihoek 56, Berghem, 5351 SL The Netherlands
| | - T. van den Bergh
- Bio-Prodict, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | | | - L. Oliveira
- Sao Paulo Federal University (UNIFESP), Sao Paulo, Brazil
| | - G. Vriend
- CMBI, Radboud University Nijmegen Medical Centre, Geert Grooteplein 26–28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
23
|
Dynamic structure-based pharmacophore model development: a new and effective addition in the histone deacetylase 8 (HDAC8) inhibitor discovery. Int J Mol Sci 2011; 12:9440-62. [PMID: 22272142 PMCID: PMC3257139 DOI: 10.3390/ijms12129440] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/15/2011] [Accepted: 12/08/2011] [Indexed: 12/18/2022] Open
Abstract
Histone deacetylase 8 (HDAC8) is an enzyme involved in deacetylating the amino groups of terminal lysine residues, thereby repressing the transcription of various genes including tumor suppressor gene. The over expression of HDAC8 was observed in many cancers and thus inhibition of this enzyme has emerged as an efficient cancer therapeutic strategy. In an effort to facilitate the future discovery of HDAC8 inhibitors, we developed two pharmacophore models containing six and five pharmacophoric features, respectively, using the representative structures from two molecular dynamic (MD) simulations performed in Gromacs 4.0.5 package. Various analyses of trajectories obtained from MD simulations have displayed the changes upon inhibitor binding. Thus utilization of the dynamically-responded protein structures in pharmacophore development has the added advantage of considering the conformational flexibility of protein. The MD trajectories were clustered based on single-linkage method and representative structures were taken to be used in the pharmacophore model development. Active site complimenting structure-based pharmacophore models were developed using Discovery Studio 2.5 program and validated using a dataset of known HDAC8 inhibitors. Virtual screening of chemical database coupled with drug-like filter has identified drug-like hit compounds that match the pharmacophore models. Molecular docking of these hits reduced the false positives and identified two potential compounds to be used in future HDAC8 inhibitor design.
Collapse
|
24
|
Popov D. Novel protein tyrosine phosphatase 1B inhibitors: interaction requirements for improved intracellular efficacy in type 2 diabetes mellitus and obesity control. Biochem Biophys Res Commun 2011; 410:377-81. [DOI: 10.1016/j.bbrc.2011.06.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 06/01/2011] [Indexed: 12/28/2022]
|
25
|
Olmez EO, Alakent B. Alpha7 Helix Plays an Important Role in the Conformational Stability of PTP1B. J Biomol Struct Dyn 2011; 28:675-93. [DOI: 10.1080/07391102.2011.10508599] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Abstract
Members of the protein tyrosine phosphatase (Ptp) family dephosphorylate target proteins and counter the activities of protein tyrosine kinases that are involved in cellular phosphorylation and signalling. As such, certain PTPs might be tumour suppressors. Indeed, PTPs play an important part in the inhibition or control of growth, but accumulating evidence indicates that some PTPs may exert oncogenic functions. Recent large-scale genetic analyses of various human tumours have highlighted the relevance of PTPs either as putative tumour suppressors or as candidate oncoproteins. Progress in understanding the regulation and function of PTPs has provided insights into which PTPs might be potential therapeutic targets in human cancer.
Collapse
Affiliation(s)
- Sofi G Julien
- Goodman Cancer Research Centre, Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
27
|
Liu L, Parameswaran S, Liu J, Kim S, Wojcik EJ. Loop 5-directed compounds inhibit chimeric kinesin-5 motors: implications for conserved allosteric mechanisms. J Biol Chem 2010; 286:6201-10. [PMID: 21127071 DOI: 10.1074/jbc.m110.154989] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human Eg5 (HsEg5) protein is unique in its sensitivity to allosteric agents even among phylogenetic kin. For example, S-trityl-l-cysteine (STC) and monastrol are HsEg5 inhibitors that bind to a surface pocket created by the L5 loop, but neither compound inhibits the Drosophila Kinesin-5 homologue (Klp61F). Herein we ask whether or not drug sensitivity can be designed into Klp61F. Two chimeric Klp61F motor domains were engineered, bacterially expressed, and purified to test this idea. We report that effector binding can elicit a robust allosteric response comparable with HsEg5 in both motor domain chimeras. Furthermore, isothermal titration calorimetry confirms that the Klp61F chimeras have de novo binding affinities for both STC and monastrol. These data show that the mechanism of intramolecular communication between the three ligand binding sites is conserved in the Kinesin-5 family, and reconstitution of a drug binding cassette within the L5 pocket is sufficient to restore allosteric inhibition. However, the two compounds were not equivalent in their allosteric inhibition. This surprising disparity in the response between the chimeras to monastrol and STC suggests that there is more than one allosteric communication network for these effectors.
Collapse
Affiliation(s)
- Liqiong Liu
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
28
|
Kumar R, Shinde RN, Ajay D, Sobhia ME. Probing Interaction Requirements in PTP1B Inhibitors: A Comparative Molecular Dynamics Study. J Chem Inf Model 2010; 50:1147-58. [DOI: 10.1021/ci900484g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rajendra Kumar
- Centre for Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Ranajit Nivrutti Shinde
- Centre for Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Dara Ajay
- Centre for Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - M. Elizabeth Sobhia
- Centre for Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| |
Collapse
|