1
|
Malla TN, Hernandez C, Muniyappan S, Menendez D, Bizhga D, Mendez JH, Schwander P, Stojković EA, Schmidt M. Photoreception and signaling in bacterial phytochrome revealed by single-particle cryo-EM. SCIENCE ADVANCES 2024; 10:eadq0653. [PMID: 39121216 PMCID: PMC11313861 DOI: 10.1126/sciadv.adq0653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Phytochromes are red-light photoreceptors discovered in plants with homologs in bacteria and fungi that regulate a variety of physiological responses. They display a reversible photocycle between two distinct states: a red-light-absorbing Pr state and a far-red light-absorbing Pfr state. The photoconversion regulates the activity of an enzymatic domain, usually a histidine kinase (HK). The molecular mechanism that explains how light controls the HK activity is not understood because structures of unmodified bacterial phytochromes with HK activity are missing. Here, we report three cryo-electron microscopy structures of a wild-type bacterial phytochrome with HK activity determined as Pr and Pfr homodimers and as a Pr/Pfr heterodimer with individual subunits in distinct states. We propose that the Pr/Pfr heterodimer is a physiologically relevant signal transduction intermediate. Our results offer insight into the molecular mechanism that controls the enzymatic activity of the HK as part of a bacterial two-component system that perceives and transduces light signals.
Collapse
Affiliation(s)
- Tek Narsingh Malla
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | | - David Menendez
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Dorina Bizhga
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Joshua H. Mendez
- New York Structural Biology Center (NYSBC), New York, NY 10027, USA
| | - Peter Schwander
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Emina A. Stojković
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Marius Schmidt
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
2
|
Malla TN, Hernandez C, Menendez D, Bizhga D, Mendez JH, Muniyappan S, Schwander P, Stojković EA, Schmidt M. Signal Transduction in an Enzymatic Photoreceptor Revealed by Cryo-Electron Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566274. [PMID: 37986774 PMCID: PMC10659365 DOI: 10.1101/2023.11.08.566274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Phytochromes are essential photoreceptor proteins in plants with homologs in bacteria and fungi that regulate a variety of important environmental responses. They display a reversible photocycle between two distinct states, the red-light absorbing Pr and the far-red light absorbing Pfr, each with its own structure. The reversible Pr to Pfr photoconversion requires covalently bound bilin chromophore and regulates the activity of a C-terminal enzymatic domain, which is usually a histidine kinase (HK). In plants, phytochromes translocate to nucleus where the C-terminal effector domain interacts with protein interaction factors (PIFs) to induce gene expression. In bacteria, the HK phosphorylates a response-regulator (RR) protein triggering downstream gene expression through a two-component signaling pathway. Although plant and bacterial phytochromes share similar structural composition, they have contrasting activity in the presence of light with most BphPs being active in the dark. The molecular mechanism that explains bacterial and plant phytochrome signaling has not been well understood due to limited structures of full-length phytochromes with enzymatic domain resolved at or near atomic resolution in both Pr and Pfr states. Here, we report the first Cryo-EM structures of a wild-type bacterial phytochrome with a HK enzymatic domain, determined in both Pr and Pfr states, between 3.75 and 4.13 Å resolution, respectively. Furthermore, we capture a distinct Pr/Pfr heterodimer of the same protein as potential signal transduction intermediate at 3.75 Å resolution. Our three Cryo-EM structures of the distinct signaling states of BphPs are further reinforced by Cryo-EM structures of the truncated PCM of the same protein determined for the Pr/Pfr heterodimer as well as Pfr state. These structures provide insight into the different light-signaling mechanisms that could explain how bacteria and plants see the light.
Collapse
|
3
|
Otero LH, Foscaldi S, Antelo GT, Rosano GL, Sirigu S, Klinke S, Defelipe LA, Sánchez-Lamas M, Battocchio G, Conforte V, Vojnov AA, Chavas LMG, Goldbaum FA, Mroginski MA, Rinaldi J, Bonomi HR. Structural basis for the Pr-Pfr long-range signaling mechanism of a full-length bacterial phytochrome at the atomic level. SCIENCE ADVANCES 2021; 7:eabh1097. [PMID: 34818032 PMCID: PMC8612531 DOI: 10.1126/sciadv.abh1097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Phytochromes constitute a widespread photoreceptor family that typically interconverts between two photostates called Pr (red light–absorbing) and Pfr (far-red light–absorbing). The lack of full-length structures solved at the (near-)atomic level in both pure Pr and Pfr states leaves gaps in the structural mechanisms involved in the signal transmission pathways during the photoconversion. Here, we present the crystallographic structures of three versions from the plant pathogen Xanthomonas campestris virulence regulator XccBphP bacteriophytochrome, including two full-length proteins, in the Pr and Pfr states. The structures show a reorganization of the interaction networks within and around the chromophore-binding pocket, an α-helix/β-sheet tongue transition, and specific domain reorientations, along with interchanging kinks and breaks at the helical spine as a result of the photoswitching, which subsequently affect the quaternary assembly. These structural findings, combined with multidisciplinary studies, allow us to describe the signaling mechanism of a full-length bacterial phytochrome at the atomic level.
Collapse
Affiliation(s)
- Lisandro H. Otero
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Sabrina Foscaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Giuliano T. Antelo
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Germán L. Rosano
- Unidad de Espectrometría de Masa, Instituto de Biología Molecular y Celular de Rosario, UEM-IBR, CONICET, Bv. 27 de Febrero (S2000EZP), Rosario, Argentina
| | - Serena Sirigu
- Proxima-1, Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48 (91192), Gif-sur-Yvette Cedex, France
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Lucas A. Defelipe
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Notkestrasse 85 (22607), Hamburg, Germany
| | - Maximiliano Sánchez-Lamas
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Giovanni Battocchio
- Technische Universität Berlin, Institute of Chemistry, Strasse des 17. Juni 135 (D-10623), Berlin, Germany
| | - Valeria Conforte
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468 (C1440FFX), Buenos Aires, Argentina
| | - Adrián A. Vojnov
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468 (C1440FFX), Buenos Aires, Argentina
| | - Leonard M. G. Chavas
- Proxima-1, Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48 (91192), Gif-sur-Yvette Cedex, France
- Synchrotron Radiation Research Center, Nagoya University, Nagoya 464-8603, Japan
| | - Fernando A. Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Maria-Andrea Mroginski
- Technische Universität Berlin, Institute of Chemistry, Strasse des 17. Juni 135 (D-10623), Berlin, Germany
| | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Hernán R. Bonomi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| |
Collapse
|
4
|
Grazhdankin E, Stepniewski M, Xhaard H. Modeling membrane proteins: The importance of cysteine amino-acids. J Struct Biol 2020; 209:107400. [DOI: 10.1016/j.jsb.2019.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
|
5
|
Wang J, Kinch LN, Denard B, Lee CE, Esmaeilzadeh Gharehdaghi E, Grishin N, Ye J. Identification of residues critical for topology inversion of the transmembrane protein TM4SF20 through regulated alternative translocation. J Biol Chem 2019; 294:6054-6061. [PMID: 30808712 DOI: 10.1074/jbc.ra119.007681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/05/2019] [Indexed: 11/06/2022] Open
Abstract
Adopting a proper topology is crucial for transmembrane proteins to perform their functions. We previously reported that ceramide regulates a transmembrane protein called TM4SF20 (transmembrane 4 L six family member 20) through topological inversion by altering the direction through which the protein is translocated across membranes during translation. This regulatory mechanism, denoted regulated alternative translocation (RAT), depends on a GXXXN motif present in the first transmembrane helix of TM4SF20. Here, using site-directed mutagenesis, we show that Asn-26 in the motif is crucial for RAT of TM4SF20, as it cannot be replaced even by Gln. In contrast, Gly-22 in the motif could be substituted by other small residues such as Ala and Ser without affecting RAT of TM4SF20. We further demonstrate that the GXXXN motif alone is insufficient to induce RAT of a transmembrane protein because TM4SF4, a relative of TM4SF20 that also contains the motif in the first transmembrane helix, did not undergo RAT. Using TM4SF40-TM4SF20 chimeras, we identified Pro-29 of TM4SF20 as another important element required for RAT of the protein. Substituting Pro-29 alone did not affect RAT of TM4SF20, whereas replacing Pro-29 together with either Leu-25 or Val-17 of TM4SF20 with the corresponding residues of TM4SF4 abolished RAT of TM4SF20. Because Val-17, Gly-22, Leu-25, Asn-26, and Pro-29 are predicted to reside along the same surface of the transmembrane helix, our results suggest that interactions with other proteins mediated by this surface during translocation may be critical for RAT of TM4SF20.
Collapse
Affiliation(s)
- Jingcheng Wang
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Lisa N Kinch
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Bray Denard
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ching-En Lee
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | - Nick Grishin
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jin Ye
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390.
| |
Collapse
|
6
|
Li S, Wu B, Han W. Parametrization of MARTINI for Modeling Hinging Motions in Membrane Proteins. J Phys Chem B 2019; 123:2254-2269. [DOI: 10.1021/acs.jpcb.8b11244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Shu Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bohua Wu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
7
|
Exploring conformational states and helical packings in the P2X receptor transmembrane domain by molecular dynamics simulation. J Biol Phys 2018; 44:331-344. [PMID: 29611030 DOI: 10.1007/s10867-018-9493-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 03/19/2018] [Indexed: 02/05/2023] Open
Abstract
The P2X receptor is a trimeric transmembrane protein that acts as an ATP-gated ion channel. Its transmembrane domain (TMD) contains only six helices and three of them, the M2 helices, line the ion conduction pathway. Here, using molecular dynamics simulation, I identify four conformational states of the TMD that are associated with four types of packing between M2 helices. Packing in the extracellular half of the M2 helix produces closed conformations, while packing in the intracellular half produces both open and closed conformations. State transition is observed and supports a mechanism where iris-like twisting of the M2 helices switches the location of helical packing between the extracellular and the intracellular halves of the helices. In addition, this twisting motion alters the position and orientation of residue side-chains relative to the pore and therefore influences the pore geometry and possibly ion permeation. Helical packing, on the other hand, may restrict the twisting motion and generate discrete conformational states.
Collapse
|
8
|
Högel P, Götz A, Kuhne F, Ebert M, Stelzer W, Rand KD, Scharnagl C, Langosch D. Glycine Perturbs Local and Global Conformational Flexibility of a Transmembrane Helix. Biochemistry 2018; 57:1326-1337. [DOI: 10.1021/acs.biochem.7b01197] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Philipp Högel
- Center
for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl Chemie
der Biopolymere, Technical University of Munich, Weihenstephaner
Berg 3, 85354 Freising, Germany
| | - Alexander Götz
- Physics
of Synthetic Biological Systems (E14), Technical University of Munich, Maximus-von-Imhof Forum 4, 85354 Freising, Germany
| | - Felix Kuhne
- Center
for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl Chemie
der Biopolymere, Technical University of Munich, Weihenstephaner
Berg 3, 85354 Freising, Germany
| | - Maximilian Ebert
- Center
for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl Chemie
der Biopolymere, Technical University of Munich, Weihenstephaner
Berg 3, 85354 Freising, Germany
| | - Walter Stelzer
- Center
for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl Chemie
der Biopolymere, Technical University of Munich, Weihenstephaner
Berg 3, 85354 Freising, Germany
| | - Kasper D. Rand
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Christina Scharnagl
- Physics
of Synthetic Biological Systems (E14), Technical University of Munich, Maximus-von-Imhof Forum 4, 85354 Freising, Germany
| | - Dieter Langosch
- Center
for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl Chemie
der Biopolymere, Technical University of Munich, Weihenstephaner
Berg 3, 85354 Freising, Germany
| |
Collapse
|
9
|
Hu GM, Mai TL, Chen CM. Clustering and visualizing similarity networks of membrane proteins. Proteins 2015; 83:1450-61. [PMID: 26011797 DOI: 10.1002/prot.24832] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/23/2015] [Accepted: 05/17/2015] [Indexed: 01/05/2023]
Abstract
We proposed a fast and unsupervised clustering method, minimum span clustering (MSC), for analyzing the sequence-structure-function relationship of biological networks, and demonstrated its validity in clustering the sequence/structure similarity networks (SSN) of 682 membrane protein (MP) chains. The MSC clustering of MPs based on their sequence information was found to be consistent with their tertiary structures and functions. For the largest seven clusters predicted by MSC, the consistency in chain function within the same cluster is found to be 100%. From analyzing the edge distribution of SSN for MPs, we found a characteristic threshold distance for the boundary between clusters, over which SSN of MPs could be properly clustered by an unsupervised sparsification of the network distance matrix. The clustering results of MPs from both MSC and the unsupervised sparsification methods are consistent with each other, and have high intracluster similarity and low intercluster similarity in sequence, structure, and function. Our study showed a strong sequence-structure-function relationship of MPs. We discussed evidence of convergent evolution of MPs and suggested applications in finding structural similarities and predicting biological functions of MP chains based on their sequence information.
Collapse
Affiliation(s)
- Geng-Ming Hu
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan
| | - Te-Lun Mai
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan
| | - Chi-Ming Chen
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
10
|
Langosch D, Scharnagl C, Steiner H, Lemberg MK. Understanding intramembrane proteolysis: from protein dynamics to reaction kinetics. Trends Biochem Sci 2015; 40:318-27. [PMID: 25941170 DOI: 10.1016/j.tibs.2015.04.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/12/2022]
Abstract
Intramembrane proteolysis - cleavage of proteins within the plane of a membrane - is a widespread phenomenon that can contribute to the functional activation of substrates and is involved in several diseases. Although different families of intramembrane proteases have been discovered and characterized, we currently do not know how these enzymes discriminate between substrates and non-substrates, how site-specific cleavage is achieved, or which factors determine the rate of proteolysis. Focusing on γ-secretase and rhomboid proteases, we argue that answers to these questions may emerge from connecting experimental readouts, such as reaction kinetics and the determination of cleavage sites, to the structures and the conformational dynamics of substrates and enzymes.
Collapse
Affiliation(s)
- D Langosch
- Technische Universität München, Lehrstuhl Chemie der Biopolymere, Weihenstephaner Berg 3, 85354 Freising, and Munich Center for Integrated Protein Science (CIMPS(M)), Germany.
| | - C Scharnagl
- Fakultät für Physik E14, Technische Universität München, Maximus-von-Imhof-Forum 4, 85354 Freising, Germany
| | - H Steiner
- Ludwig-Maximilians-University Munich, Metabolic Biochemistry and DZNE (German Center for Neurodegenerative Diseases), Munich, Germany
| | - M K Lemberg
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Mai TL, Chen CM. Computational prediction of kink properties of helices in membrane proteins. J Comput Aided Mol Des 2014; 28:99-109. [PMID: 24557854 DOI: 10.1007/s10822-014-9734-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/15/2014] [Indexed: 10/25/2022]
Abstract
We have combined molecular dynamics simulations and fold identification procedures to investigate the structure of 696 kinked and 120 unkinked transmembrane (TM) helices in the PDBTM database. Our main aim of this study is to understand the formation of helical kinks by simulating their quasi-equilibrium heating processes, which might be relevant to the prediction of their structural features. The simulated structural features of these TM helices, including the position and the angle of helical kinks, were analyzed and compared with statistical data from PDBTM. From quasi-equilibrium heating processes of TM helices with four very different relaxation time constants, we found that these processes gave comparable predictions of the structural features of TM helices. Overall, 95 % of our best kink position predictions have an error of no more than two residues and 75 % of our best angle predictions have an error of less than 15°. Various structure assessments have been carried out to assess our predicted models of TM helices in PDBTM. Our results show that, in 696 predicted kinked helices, 70 % have a RMSD less than 2 Å, 71 % have a TM-score greater than 0.5, 69 % have a MaxSub score greater than 0.8, 60 % have a GDT-TS score greater than 85, and 58 % have a GDT-HA score greater than 70. For unkinked helices, our predicted models are also highly consistent with their crystal structure. These results provide strong supports for our assumption that kink formation of TM helices in quasi-equilibrium heating processes is relevant to predicting the structure of TM helices.
Collapse
Affiliation(s)
- T-L Mai
- Department of Physics, National Taiwan Normal University, 88 Sec. 4 Ting-Chou Rd., Taipei, 116, Taiwan
| | | |
Collapse
|
12
|
Bobone S, Bocchinfuso G, Park Y, Palleschi A, Hahm KS, Stella L. The importance of being kinked: role of Pro residues in the selectivity of the helical antimicrobial peptide P5. J Pept Sci 2013; 19:758-69. [DOI: 10.1002/psc.2574] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Sara Bobone
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Yoonkyung Park
- Department of Cellular & Molecular Medicine, School of Medicine; Chosun University; Gwangju 501-759 Korea
| | - Antonio Palleschi
- Department of Cellular & Molecular Medicine, School of Medicine; Chosun University; Gwangju 501-759 Korea
| | - Kyung-Soo Hahm
- BioLeaders Corp.; 559 Yongsan-Dong, Yuseong-Ku Daejeon 305-500 Korea
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; Via della Ricerca Scientifica 1 00133 Rome Italy
| |
Collapse
|
13
|
Karamitri A, Renault N, Clement N, Guillaume JL, Jockers R. Minireview: Toward the establishment of a link between melatonin and glucose homeostasis: association of melatonin MT2 receptor variants with type 2 diabetes. Mol Endocrinol 2013; 27:1217-33. [PMID: 23798576 DOI: 10.1210/me.2013-1101] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The existence of interindividual variations in G protein-coupled receptor sequences has been recognized early on. Recent advances in large-scale exon sequencing techniques are expected to dramatically increase the number of variants identified in G protein-coupled receptors, giving rise to new challenges regarding their functional characterization. The current minireview will illustrate these challenges based on the MTNR1B gene, which encodes the melatonin MT2 receptor, for which exon sequencing revealed 40 rare nonsynonymous variants in the general population and in type 2 diabetes (T2D) cohorts. Functional characterization of these MT2 mutants revealed 14 mutants with loss of Gi protein activation that associate with increased risk of T2D development. This repertoire of disease-associated mutants is a rich source for structure-activity studies and will help to define the still poorly understood role of melatonin in glucose homeostasis and T2D development in humans. Defining the functional defects in carriers of rare MT2 mutations will help to provide personalized therapies to these patients in the future.
Collapse
Affiliation(s)
- Angeliki Karamitri
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut Cochin, Paris, France
| | | | | | | | | |
Collapse
|