1
|
Gorrab A, Ouertani R, Hammami K, Souii A, Kallel F, Masmoudi AS, Cherif A, Neifar M. In silico and experimental characterization of a new polyextremophilic subtilisin-like protease from Microbacterium metallidurans and its application as a laundry detergent additive. 3 Biotech 2024; 14:200. [PMID: 39144069 PMCID: PMC11319565 DOI: 10.1007/s13205-024-04043-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Considering the current growing interest in new and improved enzymes for use in a variety of applications, the present study aimed to characterize a novel detergent-stable serine alkaline protease from the extremophilic actinobacterium Microbacterium metallidurans TL13 (MmSP) using a combined in silico and experimental approach. The MmSP showed a close phylogenetic relationship with high molecular weight S8 peptidases of Microbacterium species. Moreover, its physical and chemical parameters computed using Expasy's ProtParam tool revealed that MmSP is hydrophilic, halophilic and thermo-alkali stable. 3D structure modelling and functional prediction of TL13 serine protease resulted in the detection of five characteristic domains: [catalytic subtilase domain, fibronectin (Fn) type-III domain, peptidase inhibitor I9, protease-associated (PA) domain and bacterial Ig-like domain (group 3)], as well as the three amino acid residues [aspartate (D182), histidine (H272) and serine (S604)] in the catalytic subtilase domain. The extremophilic strain TL13 was tested for protease production using agricultural wastes/by-products as carbon substrates. Maximum enzyme activity (390 U/gds) was obtained at 8th day fermentation on potato peel medium. Extracellular extract was concentrated and partially purified using ammonium sulfate precipitation methodology (1.58 folds purification fold). The optimal pH, temperature and salinity of MmSP were 9, 60 °C and 1 M NaCl, respectively. The MmSP protease showed broad pH stability, thermal stability, salt tolerance and detergent compatibility. In order to achieve the maximum stain removal efficacy by the TL 13 serine protease, the operation conditions were optimized using a Box-Behnken Design (BBD) with four variables, namely, time (15-75 min), temperature (30-60 °C), MmSP enzyme concentration (5-10 U/mL) and pH (7-11). The maximum stain removal yield (95 ± 4%) obtained under the optimal enzymatic operation conditions (treatment with 7.5 U/mL of MmSP during 30 min at 32 °C and pH9) was in good agreement with the value predicted by the regression model (98 ± %), which prove the validity of the fitted model. In conclusion, MmSP appears to be a good candidate for industrial applications, particularly in laundry detergent formulations, due to its high hydrophilicity, alkali-halo-stability, detergent compatibility and stain removal efficiency.
Collapse
Affiliation(s)
- Afwa Gorrab
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia
| | - Rania Ouertani
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia
| | - Khouloud Hammami
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia
| | - Amal Souii
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia
| | - Fatma Kallel
- Laboratory of Plant Improvement and Valorization of Agro-resources (APVA-LR16ES20), ENIS, University of Sfax, 3030 Sfax, Tunisia
| | - Ahmed Slaheddine Masmoudi
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia
| | - Ameur Cherif
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia
| | - Mohamed Neifar
- Laboratory of Plant Improvement and Valorization of Agro-resources (APVA-LR16ES20), ENIS, University of Sfax, 3030 Sfax, Tunisia
- Common Services Unit “Bioreactor Coupled with an Ultrafilter”, ENIS, University of Sfax, 3030 Sfax, Tunisia
| |
Collapse
|
2
|
Oyewusi HA, Adedamola Akinyede K, Wahab RA, Susanti E, Syed Yaacob SN, Huyop F. Biological and molecular approaches of the degradation or decolorization potential of the hypersaline Lake Tuz Bacillus megaterium H2 isolate. J Biomol Struct Dyn 2024; 42:6228-6244. [PMID: 37455463 DOI: 10.1080/07391102.2023.2234040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
The presence of synthetic dyes in water bodies and soil is one of the major issues affecting the global ecology, possibly impacting societal well-being adversely due to the colorants' recalcitrance and toxicity. Herein, the study spectrophotometrically monitored the ability of the Bacillus megaterium H2 azoreductase (AzrBmH2) to degrade four synthetic dyes, reactive blue 4, remazol brilliant red, thymol blue, and methyl red, followed by in-silico assessment using GROMACS. We found that the bacterium degraded as much as 60% of all four synthetic dyes at various tested concentrations. The genome analysis revealed five different azoreductase genes, which were then modeled into the AzrBmH21, AzrBmH22/3, and AzrBmH24/5 templates. The AzrBmH2-substrate complexes showed binding energies with all the dyes of between -10.6 to -6.9 kcal/mol and formed 4-6 hydrogen bonds with the predicted catalytic binding residues (His10, Glu 14, Ser 58, Met 99, Val 107, His 183, Asn184 and Gln 191). In contrast, the lowest binding energies were observed for the AzrBmH21-substrates (-10.6 to -7.9). Molecular dynamic simulations revealed that the AzrBmH21-substrate complexes were more stable (RMSD 0.2-0.25 nm, RMSF 0.05 - 0.3 nm) and implied strong bonding with the dyes. The Molecular Mechanics Poisson-Boltzmann Surface Area results also mirrored this outcome, showing the lowest azoreductase-dye binding energy in the order of AzrBmH21-RB4 (-78.18 ± 8.92 kcal/mol), AzrBmH21-RBR (-67.51 ± 7.74 kcal/mol), AzrBmH21-TB (-46.62 ± 5.23 kcal/mol) and AzrBmH21-MR (-40.78 ± 7.87 kcal/mol). In short, the study demonstrated the ability of the B. megaterium H2 to efficiently decolorize the above-said synthetic dyes, conveying the bacterium's promising use for large-scale dye remediation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Habeebat Adekilekun Oyewusi
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
- Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
- Department of Science Technology, Biochemistry Unit, The Federal Polytechnic, Ado Ekiti, Nigeria
| | - Kolajo Adedamola Akinyede
- Department of Science Technology, Biochemistry Unit, The Federal Polytechnic, Ado Ekiti, Nigeria
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| | - Roswanira Abdul Wahab
- Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
- Department of Applied Science, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang, Indonesia
| | - Evi Susanti
- Department of Applied Science, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang, Indonesia
| | - Syariffah Nuratiqah Syed Yaacob
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
- Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
- Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
3
|
Oyewusi HA, Akinyede KA, Abdul Wahab R, Huyop F. In silico analysis of a putative dehalogenase from the genome of halophilic bacterium Halomonas smyrnensis AAD6T. J Biomol Struct Dyn 2023; 41:319-335. [PMID: 34854349 DOI: 10.1080/07391102.2021.2006085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Microbial-assisted removal of natural or synthetic pollutants is the prevailing green, low-cost technology to treat polluted environments. However, the challenge with enzyme-assisted bioremediation is the laborious nature of dehalogenase-producing microorganisms' bioprospecting. This bottleneck could be circumvented by in-silico analysis of certain microorganisms' whole-genome sequences to predict their protein functions and enzyme versatility for improved biotechnological applications. Herein, this study performed structural analysis on a dehalogenase (DehHsAAD6) from the genome of Halomonas smyrnensis AAD6 by molecular docking and molecular dynamic (MD) simulations. Other bioinformatics tools were also employed to identify substrate preference (haloacids and haloacetates) of the DehHsAAD6. The DehHsAAD6 preferentially degraded haloacids and haloacetates (-3.2-4.8 kcal/mol) and which formed three hydrogen bonds with Tyr12, Lys46, and Asp182. MD simulations data revealed the higher stability of DehHsAAD6-haloacid- (RMSD 0.22-0.3 nm) and DehHsAAD6-haloacetates (RMSF 0.05-0.14 nm) complexes, with the DehHsAAD6-L-2CP complex being the most stable. The detail of molecular docking calculations ranked complexes with the lowest binding free energies as: DehHsAAD6-L-2CP complex (-4.8 kcal/mol) = DehHsAAD6-MCA (-4.8 kcal/mol) < DehHsAAD6-TCA (-4.5 kcal/mol) < DehHsAAD6-2,3-DCP (-4.1 kcal/mol) < DehHsAAD6-D-2CP (-3.9 kcal/mol) < DehHsAAD6-2,2-DCP (-3.5 kcal/mol) < DehHsAAD6-3CP (-3.2 kcal/mol). In a nutshell, the study findings offer valuable perceptions into the elucidation of possible reaction mechanisms of dehalogenases for extended substrate specificity and higher catalytic activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Habeebat Adekilekun Oyewusi
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Department of Science Technology, Biochemistry unit, The Federal Polytechnic P.M.B, Ado Ekiti, Ekiti State, Nigeria
| | - Kolajo Adedamola Akinyede
- Department of Science Technology, Biochemistry unit, The Federal Polytechnic P.M.B, Ado Ekiti, Ekiti State, Nigeria.,Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town, South Africa
| | - Roswanira Abdul Wahab
- Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
4
|
Rationally tailoring the halophilicity of an amylolytic enzyme for application in dehydrating conditions. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Ahmad A, Rahamtullah, Mishra R. Structural and functional adaptation in extremophilic microbial α-amylases. Biophys Rev 2022; 14:499-515. [PMID: 35528036 PMCID: PMC9043155 DOI: 10.1007/s12551-022-00931-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/12/2022] [Indexed: 01/26/2023] Open
Abstract
Maintaining stable native conformation of a protein under a given ecological condition is the prerequisite for survival of organisms. Extremophilic bacteria and archaea have evolved to adapt under extreme conditions of temperature, pH, salt, and pressure. Molecular adaptations of proteins under these conditions are essential for their survival. These organisms have the capability to maintain stable, native conformations of proteins under extreme conditions. The enzymes produced by the extremophiles are also known as extremozyme, which are used in several industries. Stability and functionality of extremozymes under varying temperature, pH, and solvent conditions are the most desirable requirement of industry. α-Amylase is one of the most important enzymes used in food, pharmaceutical, textile, and detergent industries. This enzyme is produced by diverse microorganisms including various extremophiles. Therefore, understanding its stability is important from fundamental as well as an applied point of view. Each class of extremophiles has a distinctive set of dominant non-covalent interactions which are important for their stability. Static information obtained by comparative analysis of amino acid sequence and atomic resolution structure provides information on the prevalence of particular amino acids or a group of non-covalent interactions. Protein folding studies give the information about thermodynamic and kinetic stability in order to understand dynamic aspect of molecular adaptations. In this review, we have summarized information on amino acid sequence, structure, stability, and adaptability of α-amylases from different classes of extremophiles.
Collapse
Affiliation(s)
- Aziz Ahmad
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110,067 India
| | - Rahamtullah
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110,067 India
| | - Rajesh Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110,067 India
| |
Collapse
|
6
|
Mahmoud A, Kotb E, Alqosaibi AI, Al-Karmalawy AA, Al-Dhuayan IS, Alabkari H. In vitro and in silico characterization of alkaline serine protease from Bacillus subtilis D9 recovered from Saudi Arabia. Heliyon 2021; 7:e08148. [PMID: 34703922 PMCID: PMC8524146 DOI: 10.1016/j.heliyon.2021.e08148] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/27/2021] [Accepted: 10/06/2021] [Indexed: 02/08/2023] Open
Abstract
In this study, we have isolated and characterized proteolytic soil bacteria and their alkaline protease. Based on 16S rRNA sequence analysis, 12 isolates with the highest protease activity were classified as B. subtilis and B. cereus groups. B. subtilis D9 isolate showing the highest protease activity was selected for in vitro and in silico analysis for its ِِAKD9 protease. The enzyme has a molecular mass of 48 kDa, exhibiting optimal activity at 50 °C pH 9.5, and showed high stability till 65 °C and pH 8–11 for 1 h. Fe3+ stimulated, but Zn2+ and Hg2+ strongly inhibited the protease activity. Also, the maximum inhibition with PMSF indicated serine protease-type of AKD9 protease. AkD9 alkaline serine protease gene showed high sequence similarity and close phylogenetic relationship with AprX serine protease of B. subtilis isolates. Functional prediction of AKD9 resulted in the detection of subtilase domain, peptidase_S8 family, and subtilase active sites. Moreover, prediction of physicochemical properties indicated that AKD9 serine protease is hydrophilic, thermostable, and alkali-halo stable. Secondary structure prediction revealed the dominance of the coils enhances AKD9 activity and stability under saline and alkaline conditions. Based on molecular docking, AKD9 showed very promising binding affinities towards casein substrate with expected intrinsic proteolytic activities matching our obtained in vitro results. In conclusion, AKD9 alkaline serine protease seems to be a significant candidate for industrial applications because of its stability, hydrophilicity, enhanced thermostability, and alkali-halo stability.
Collapse
Affiliation(s)
- Amal Mahmoud
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.,Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Essam Kotb
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.,Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Amany I Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.,Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Ibtesam S Al-Dhuayan
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.,Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Hameedah Alabkari
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.,Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| |
Collapse
|
7
|
Gómez-Villegas P, Vigara J, Romero L, Gotor C, Raposo S, Gonçalves B, Léon R. Biochemical Characterization of the Amylase Activity from the New Haloarchaeal Strain Haloarcula sp. HS Isolated in the Odiel Marshlands. BIOLOGY 2021; 10:biology10040337. [PMID: 33923574 PMCID: PMC8073556 DOI: 10.3390/biology10040337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
Alpha-amylases are a large family of α,1-4-endo-glycosyl hydrolases distributed in all kingdoms of life. The need for poly-extremotolerant amylases encouraged their search in extreme environments, where archaea become ideal candidates to provide new enzymes that are able to work in the harsh conditions demanded in many industrial applications. In this study, a collection of haloarchaea isolated from Odiel saltern ponds in the southwest of Spain was screened for their amylase activity. The strain that exhibited the highest activity was selected and identified as Haloarcula sp. HS. We demonstrated the existence in both, cellular and extracellular extracts of the new strain, of functional α-amylase activities, which showed to be moderately thermotolerant (optimum around 60 °C), extremely halotolerant (optimum over 25% NaCl), and calcium-dependent. The tryptic digestion followed by HPLC-MS/MS analysis of the partially purified cellular and extracellular extracts allowed to identify the sequence of three alpha-amylases, which despite sharing a low sequence identity, exhibited high three-dimensional structure homology, conserving the typical domains and most of the key consensus residues of α-amylases. Moreover, we proved the potential of the extracellular α-amylase from Haloarcula sp. HS to treat bakery wastes under high salinity conditions.
Collapse
Affiliation(s)
- Patricia Gómez-Villegas
- Laboratory of Biochemistry, Department of Chemistry, Marine International Campus of Excellence (CEIMAR), University of Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain; (P.G.-V.); (J.V.)
| | - Javier Vigara
- Laboratory of Biochemistry, Department of Chemistry, Marine International Campus of Excellence (CEIMAR), University of Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain; (P.G.-V.); (J.V.)
| | - Luis Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Seville, Spain; (L.R.); (C.G.)
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Seville, Spain; (L.R.); (C.G.)
| | - Sara Raposo
- CIMA—Centre for Marine and Environmental Research, FCT, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (S.R.); (B.G.)
| | - Brígida Gonçalves
- CIMA—Centre for Marine and Environmental Research, FCT, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (S.R.); (B.G.)
| | - Rosa Léon
- Laboratory of Biochemistry, Department of Chemistry, Marine International Campus of Excellence (CEIMAR), University of Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain; (P.G.-V.); (J.V.)
- Correspondence: ; Tel.: +34-959-219-951
| |
Collapse
|
8
|
Oyewusi HA, Huyop F, Wahab RA. Molecular docking and molecular dynamics simulation of Bacillus thuringiensis dehalogenase against haloacids, haloacetates and chlorpyrifos. J Biomol Struct Dyn 2020; 40:1979-1994. [PMID: 33094694 DOI: 10.1080/07391102.2020.1835727] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The high dependency and surplus use of agrochemical products have liberated enormous quantities of toxic halogenated pollutants into the environment and threaten the well-being of humankind. Herein, this study performed molecular docking, molecular dynamic (MD) simulations, molecular mechanics-Poisson Boltzmann Surface Area (MM-PBSA) calculations on the DehH2 from Bacillus thuringiensis, to identify the order of which the enzyme degrades different substrates, haloacids, haloacetate and chlorpyrifos. The study discovered that the DehH2 favored the degradation of haloacids and haloacetates (-3.3 - 4.6 kcal/mol) and formed three hydrogen bonds with Asp125, Arg201 and Lys202. Despite the inconclusive molecular docking result, chlorpyrifos was consistently shown to be the least favored substrate of the DehH2 in MD simulations and MM-PBSA calculations. Results of MD simulations revealed the DehH2-haloacid- (RMSD 0.15 - 0.25 nm) and DehH2-haloacetates (RMSF 0.05 - 0.25 nm) were more stable, with the DehH2-L-2CP complex being the most stable while the least was the DehH2-chlorpyrifos (RMSD 0.295 nm; RMSF 0.05 - 0.59 nm). The Molecular Mechanics Poisson-Boltzmann Surface Area calculations showed the DehH2-L-2CP complex (-24.27 kcal/mol) having the lowest binding energy followed by DehH2-MCA (-22.78 kcal/mol), DehH2-D-2CP (-21.82 kcal/mol), DehH2-3CP (-21.11 kcal/mol), DehH2-2,2-DCP (-18.34 kcal/mol), DehH2-2,3-DCP (-8.34 kcal/mol), DehH2-TCA (-7.62 kcal/mol), while chlorpyrifos was unable to spontaneously bind to DehH2 (+127.16 kcal/mol). In a nutshell, the findings of this study offer valuable insights into the rational tailoring of the DehH2 for expanding its substrate specificity and catalytic activity in the near future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Habeebat Adekilekun Oyewusi
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Department of Biochemistry, School of Science and Computer Studies, Federal Polytechnic Ado Ekiti, Ado Ekiti PMB, Ekiti State, Nigeria
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
9
|
Pinto ÉSM, Dorn M, Feltes BC. The tale of a versatile enzyme: Alpha-amylase evolution, structure, and potential biotechnological applications for the bioremediation of n-alkanes. CHEMOSPHERE 2020; 250:126202. [PMID: 32092569 DOI: 10.1016/j.chemosphere.2020.126202] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/10/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
As the primary source of a wide range of industrial products, the study of petroleum-derived compounds is of pivotal importance. However, the process of oil extraction and refinement is among the most environmentally hazardous practices, impacting almost all levels of the ecological chain. So far, the most appropriate strategy to overcome such an issue is through bioremediation, which revolves around the employment of different microorganisms to degrade hazardous compounds, generating less environmental impact and lower monetary costs. In this sense, a myriad of organisms and enzymes are considered possible candidates for the bioremediation process. Amidst the potential candidates is α-amylase, an evolutionary conserved starch-degrading enzyme. Notably, α-amylase was not only seen to degrade n-alkanes, a subclass of alkanes considered the most abundant petroleum-derived compounds but also low-density polyethylene, a dangerous pollutant produced from petroleum. Thus, due to its high conservation in both eukaryotic and prokaryotic lineages, in addition to the capability to degrade different types of hazardous compounds, the study of α-amylase becomes a rising interest. Nevertheless, there are no studies that review all biotechnological applications of α-amylase for bioremediation. In this work, we critically review the potential biotechnological applications of α-amylase, focusing on the biodegradation of petroleum-derived compounds. Evolutionary aspects are discussed, as well for all structural information and all features that could impact on the employment of this protein in the biotechnological industry, such as pH, temperature, and medium conditions. New perspectives and critical assessments are conducted regarding the application of α-amylase in the bioremediation of n-alkanes.
Collapse
Affiliation(s)
- Éderson Sales Moreira Pinto
- Laboratory of Structural Bioinformatics and Computational Biology, Center for Biotechnology, Federal University of Rio Grande do Sul, Brazil
| | - Márcio Dorn
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, Brazil; Laboratory of Structural Bioinformatics and Computational Biology, Center for Biotechnology, Federal University of Rio Grande do Sul, Brazil
| | - Bruno César Feltes
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, Brazil.
| |
Collapse
|
10
|
Bhatt HB, Singh SP. Cloning, Expression, and Structural Elucidation of a Biotechnologically Potential Alkaline Serine Protease From a Newly Isolated Haloalkaliphilic Bacillus lehensis JO-26. Front Microbiol 2020; 11:941. [PMID: 32582046 PMCID: PMC7283590 DOI: 10.3389/fmicb.2020.00941] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
An alkaline protease gene of Bacillus lehensis JO-26 from saline desert, Little Rann of Kutch, was cloned and expressed in Escherichia coli BL21 (DE3). A 1,014-bp ORF encoded 337 amino acids. The recombinant protease (APrBL) with Asp 97, His 127, and Ser 280 forming catalytic triad belongs to the subtilase S8 protease family. The gene was optimally expressed in soluble fraction with 0.2 mM isopropyl β-D-thiogalactopyranoside (IPTG), 2% (w/v) NaCl at 28°C. APrBL, a monomer with a molecular mass of 34.6 kDa was active over pH 8–11 and 30°C−70°C, optimally at pH 10 and 50°C. The enzyme was highly thermostable and retained 73% of the residual activity at 80°C up to 3 h. It was significantly stimulated by sodium dodecyl sulfate (SDS), Ca2+, chloroform, toluene, n-butanol, and benzene while completely inhibited by phenylmethylsulfonyl fluoride (PMSF) and Hg2+. The serine nature of the protease was confirmed by its strong inhibition by PMSF. The APrBL gene was phylogenetically close to alkaline elastase YaB (P20724) and was distinct from the well-known commercial proteases subtilisin Carlsberg (CAB56500) and subtilisin BPN′ (P00782). The structural elucidation revealed 31.75% α-helices, 22.55% β-strands, and 45.70% coils. Although high glycine and fewer proline residues are a characteristic feature of the cold-adapted enzymes, the similar observation in thermally active APrBL suggests that this feature cannot be solely responsible for thermo/cold adaptation. The APrBL protease was highly effective as a detergent additive and in whey protein hydrolysis.
Collapse
Affiliation(s)
- Hitarth B Bhatt
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India
| |
Collapse
|
11
|
Li S, Yang Q, Tang B. Improving the thermostability and acid resistance of Rhizopus oryzae α-amylase by using multiple sequence alignment based site-directed mutagenesis. Biotechnol Appl Biochem 2020; 67:677-684. [PMID: 32133700 DOI: 10.1002/bab.1907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
Higher thermostability or acid resistance for fungal α-amylase will help to improve the sugar-making process and cut down the production costs. Here, the thermostability or acid resistance of Rhizopus oryzae α-amylase (ROAmy) was significantly enhanced by site-directed evolution based on multiple sequence alignment (MSA) method. For instance, compared with the wild-type ROAmy, the optimum temperature of mutants G136D and A144Y was increased from 50 to 55 °C, whereas for mutants V174R and I276P, the optimum temperature was increased from 50 to 60 °C. The optimum pH of mutants G136D and A144Y shifted from 5.5 to 5.0, whereas for mutants V174R and T253E, the optimum pH changed from 5.5 to 4.5. The results showed that mutant V174R had a 2.52-fold increase in half-life at 55 °C, a 2.55-fold increase in half-life at pH 4.5, and a 1.61-fold increase in catalytic efficiency (kcat /Km ) on soluble starch. The three-dimensional model simulation revealed that changes of hydrophilicity, hydrogen bond, salt bridge, or rigidity observed in mutants might mainly account for the improvement of thermostability and acid resistance. The mutants with improved catalytic properties attained in this work may render an accessible and operable approach for directed evolution of fungal α-amylase aimed at interesting functions.
Collapse
Affiliation(s)
- Song Li
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Central Beijing Road, Wuhu, China
| | - Qian Yang
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Central Beijing Road, Wuhu, China
| | - Bin Tang
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Central Beijing Road, Wuhu, China
| |
Collapse
|
12
|
Edbeib MF, Aksoy HM, Kaya Y, Wahab RA, Huyop F. Haloadaptation: insights from comparative modeling studies between halotolerant and non-halotolerant dehalogenases. J Biomol Struct Dyn 2019; 38:3452-3461. [PMID: 31422756 DOI: 10.1080/07391102.2019.1657498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Halophiles are extremophilic microorganisms that grow optimally at high salt concentrations by producing a myriad of equally halotolerant enzymes. Structural haloadaptation of these enzymes adept to thriving under high-salt environments, though are not fully understood. Herein, the study attempts an in silico investigation to identify and comprehend the evolutionary structural adaptation of a halotolerant dehalogenase, DehHX (GenBank accession number: KR297065) of the halotolerant Pseudomonas halophila, over its non-halotolerant counterpart, DehMX1 (GenBank accession number KY129692) produced by Pseudomonas aeruginosa. GC content of the halotolerant DehHX DNA sequence was distinctively higher (58.9%) than the non-halotolerant dehalogenases (55% average GC). Its acidic residues, Asp and Glu were 8.27% and 12.06%, respectively, compared to an average 5.5% Asp and 7% Glu, in the latter; but lower contents of basic and hydrophobic residues in the DehHX. The secondary structure of DehHX interestingly revealed a lower incidence of α-helix forming regions (29%) and a higher percentage of coils (57%), compared to 49% and 29% in the non-halotolerant homologues, respectively. Simulation models showed the DehHX is stable under a highly saline environment (25% w/v) by adopting a highly negative-charged surface with a concomitant weakly interacting hydrophobic core. The study thus, established that a halotolerant dehalogenase undergoes notable evolutionary structural changes related to GC content over its non-halotolerant counterpart, in order to adapt and thrive under highly saline environments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed Faraj Edbeib
- Department of Animal Production, Faculty of Agriculture, Baniwalid University, Baniwalid, Libya.,Department of Plant Protection, Agricultural Faculty, Ondokuz Mayis University, Samsun, Turkey
| | - Hasan Murat Aksoy
- Department of Plant Protection, Agricultural Faculty, Ondokuz Mayis University, Samsun, Turkey
| | - Yilmaz Kaya
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey.,Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Fahrul Huyop
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey.,Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
13
|
Janeček Š, Gabriško M. Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family. Cell Mol Life Sci 2016; 73:2707-25. [PMID: 27154042 PMCID: PMC11108405 DOI: 10.1007/s00018-016-2246-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022]
Abstract
The α-amylase is a ubiquitous starch hydrolase catalyzing the cleavage of the α-1,4-glucosidic bonds in an endo-fashion. Various α-amylases originating from different taxonomic sources may differ from each other significantly in their exact substrate preference and product profile. Moreover, it also seems to be clear that at least two different amino acid sequences utilizing two different catalytic machineries have evolved to execute the same α-amylolytic specificity. The two have been classified in the Cabohydrate-Active enZyme database, the CAZy, in the glycoside hydrolase (GH) families GH13 and GH57. While the former and the larger α-amylase family GH13 evidently forms the clan GH-H with the families GH70 and GH77, the latter and the smaller α-amylase family GH57 has only been predicted to maybe define a future clan with the family GH119. Sequences and several tens of enzyme specificities found throughout all three kingdoms in many taxa provide an interesting material for evolutionarily oriented studies that have demonstrated remarkable observations. This review emphasizes just the three of them: (1) a close relatedness between the plant and archaeal α-amylases from the family GH13; (2) a common ancestry in the family GH13 of animal heavy chains of heteromeric amino acid transporter rBAT and 4F2 with the microbial α-glucosidases; and (3) the unique sequence features in the primary structures of amylomaltases from the genus Borrelia from the family GH77. Although the three examples cannot represent an exhaustive list of exceptional topics worth to be interested in, they may demonstrate the importance these enzymes possess in the overall scientific context.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia.
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 91701, Trnava, Slovakia.
| | - Marek Gabriško
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia
| |
Collapse
|
14
|
Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments. World J Microbiol Biotechnol 2016; 32:135. [PMID: 27344438 DOI: 10.1007/s11274-016-2081-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
Abstract
The unique cellular enzymatic machinery of halophilic microbes allows them to thrive in extreme saline environments. That these microorganisms can prosper in hypersaline environments has been correlated with the elevated acidic amino acid content in their proteins, which increase the negative protein surface potential. Because these microorganisms effectively use hydrocarbons as their sole carbon and energy sources, they may prove to be valuable bioremediation agents for the treatment of saline effluents and hypersaline waters contaminated with toxic compounds that are resistant to degradation. This review highlights the various strategies adopted by halophiles to compensate for their saline surroundings and includes descriptions of recent studies that have used these microorganisms for bioremediation of environments contaminated by petroleum hydrocarbons. The known halotolerant dehalogenase-producing microbes, their dehalogenation mechanisms, and how their proteins are stabilized is also reviewed. In view of their robustness in saline environments, efforts to document their full potential regarding remediation of contaminated hypersaline ecosystems merits further exploration.
Collapse
|
15
|
Analysis on evolutionary relationship of amylases from archaea, bacteria and eukaryota. World J Microbiol Biotechnol 2016; 32:24. [PMID: 26745984 PMCID: PMC4706583 DOI: 10.1007/s11274-015-1979-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/16/2015] [Indexed: 12/16/2022]
Abstract
Amylase is one of the earliest characterized enzymes and has many applications in clinical and industrial settings. In biotechnological industries, the amylase activity is enhanced through modifying amylase structure and through cloning and expressing targeted amylases in different species. It is important to understand how engineered amylases can survive from generation to generation. This study used phylogenetic and statistical approaches to explore general patterns of amylases evolution, including 3118 α-amylases and 280 β-amylases from archaea, eukaryota and bacteria with fully documented taxonomic lineage. First, the phylogenetic tree was created to analyze the evolution of amylases with focus on individual amylases used in biofuel industry. Second, the average pairwise p-distance was computed for each kingdom, phylum, class, order, family and genus, and its diversity implies multi-time and multi-clan evolution. Finally, the variance was further partitioned into inter-clan variance and intra-clan variance for each taxonomic group, and they represent horizontal and vertical gene transfer. Theoretically, the results show a full picture on the evolution of amylases in manners of vertical and horizontal gene transfer, and multi-time and multi-clan evolution as well. Practically, this study provides the information on the surviving chance of desired amylase in a given taxonomic group, which may potentially enhance the successful rate of cloning and expression of amylase gene in different species.
Collapse
|
16
|
Kumar S, Grewal J, Sadaf A, Hemamalini R, K. Khare S. Halophiles as a source of polyextremophilic α-amylase for industrial applications. AIMS Microbiol 2016. [DOI: 10.3934/microbiol.2016.1.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Contribution of the multiple Type I signal peptidases to the secretome of Listeria monocytogenes: Deciphering their specificity for secreted exoproteins by exoproteomic analysis. J Proteomics 2015; 117:95-105. [DOI: 10.1016/j.jprot.2015.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/18/2014] [Accepted: 01/13/2015] [Indexed: 12/29/2022]
|