1
|
Tammareddy T, Keyrouz W, Sriram RD, Pant HC, Cardone A, Klauda JB. Investigation of the Effect of Peptide p5 Targeting CDK5-p25 Hyperactivity on Munc18-1 (P67) Regulating Neuronal Exocytosis Using Molecular Simulations. Biochemistry 2024; 63:1837-1857. [PMID: 38953497 DOI: 10.1021/acs.biochem.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Munc18-1 is an SM (sec1/munc-like) family protein involved in vesicle fusion and neuronal exocytosis. Munc18-1 is known to regulate the exocytosis process by binding with closed- and open-state conformations of Syntaxin1, a protein belonging to the SNARE family established to be central to the exocytosis process. Our previous work studied peptide p5 as a promising drug candidate for CDK5-p25 complex, an Alzheimer's disease (AD) pathological target. Experimental in vivo and in vitro studies suggest that Munc18-1 promotes p5 to selectively inhibit the CDK5-p25 complex without affecting the endogenous CDK5 activity, a characteristic of remarkable therapeutic implications. In this paper, we identify several binding modes of p5 with Munc18-1 that could potentially affect the Munc18-1 binding with SNARE proteins and lead to off-target effects on neuronal communication using molecular dynamics simulations. Recent studies indicate that disruption of Munc18-1 function not only disrupts neurotransmitter release but also results in neurodegeneration, exhibiting clinical resemblance to other neurodegenerative conditions such as AD, causing diagnostic and treatment challenges. We characterize such interactions between p5 and Munc18-1, define the corresponding pharmacophores, and provide guidance for the in vitro validation of our findings to improve therapeutic efficacy and safety of p5.
Collapse
Affiliation(s)
- Tejaswi Tammareddy
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | | | | | - Harish C Pant
- Neuronal Cytoskeletal Protein Regulation Section, Laboratory of Neurochemistry, NINDS, Bethesda, Maryland 20892, United States
| | | | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Physical Science & Technology, Biophysics Graduate Program, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Tammareddy T, Keyrouz W, Sriram RD, Pant HC, Cardone A, Klauda JB. Computational Study of the Allosteric Effects of p5 on CDK5-p25 Hyperactivity as Alternative Inhibitory Mechanisms in Neurodegeneration. J Phys Chem B 2022; 126:5033-5044. [PMID: 35771127 DOI: 10.1021/acs.jpcb.2c02868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyclin-dependent kinase (CDK5) forms a stable complex with its activator p25, leading to the hyperphosphorylation of tau proteins and to the formation of plaques and tangles that are considered to be one of the typical causes of Alzheimer's disease (AD). Hence, the pathological CDK5-p25 complex is a promising therapeutic target for AD. Small peptides, obtained from the truncation of CDK5 physiological activator p35, have shown promise in inhibiting the pathological complex effectively while also crossing the blood-brain barrier. One such small 24-residue peptide, p5, has shown selective inhibition toward the pathological complex in vivo. Our previous research focused on the characterization of a computationally predicted CDK5-p5 binding mode and of its pharmacophore, which was consistent with competitive inhibition. In continuation of our previous work, herein, we investigate four additional binding modes to explore other possible mechanisms of interaction between CDK5 and p5. The quantitative description of the pharmacophore is consistent with both competitive and allosteric p5-induced inhibition mechanisms of CDK5-p25 pathology. The gained insights can direct further in vivo/in vitro tests and help design small peptides, linear or cyclic, or peptidomimetic compounds as adjuvants of orthosteric inhibitors or as part of a cocktail of drugs with enhanced effectiveness and lower side effects.
Collapse
Affiliation(s)
- Tejaswi Tammareddy
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States.,Information Systems Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Walid Keyrouz
- Information Systems Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ram D Sriram
- Software and Systems Division, Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Harish C Pant
- Neuronal Cytoskeletal Protein Regulation Section, Laboratory of Neurochemistry, NINDS, Bethesda, Maryland 20892, United States
| | - Antonio Cardone
- Information Systems Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States.,Institute for Physical Science & Technology, Biophysics Graduate Program, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
TP5, a Peptide Inhibitor of Aberrant and Hyperactive CDK5/p25: A Novel Therapeutic Approach against Glioblastoma. Cancers (Basel) 2020; 12:cancers12071935. [PMID: 32708903 PMCID: PMC7409269 DOI: 10.3390/cancers12071935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022] Open
Abstract
We examined the efficacy of selective inhibition of cyclin-dependent kinase 5 (CDK5) in glioblastoma by TP5. We analyzed its impact in vitro on CDK5 expression and activity, cell survival, apoptosis and cell cycle. DNA damage was analyzed using the expression of γH2A.X and phosphorylated ATM. Its tolerance and efficacy were assessed on in vivo xenograft mouse models. We showed that TP5 decreased the activity but not the expression of CDK5 and p35. TP5 alone impaired cell viability and colony formation of glioblastoma cell lines and induced apoptosis. TP5 increased DNA damage by inhibiting the phosphorylation of ATM, leading to G1 arrest. Whereas CDK5 activity is increased by DNA-damaging agents such as temozolomide and irradiation, TP5 was synergistic with either temozolomide or irradiation due to an accumulation of DNA damage. Concomitant use of TP5 and either temozolomide or irradiation reduced the phosphorylation of ATM, increased DNA damage, and inhibited the G2/M arrest induced by temozolomide or irradiation. TP5 alone suppressed the tumor growth of orthotopic glioblastoma mouse model. The treatment was well tolerated. Finally, alone or in association with irradiation or temozolomide, TP5 prolonged mouse survival. TP5 alone or in association with temozolomide and radiotherapy is a promising therapeutic option for glioblastoma.
Collapse
|
4
|
Le ST, Morris MA, Cardone A, Guros NB, Klauda JB, Sperling BA, Richter CA, Pant HC, Balijepalli A. Rapid, quantitative therapeutic screening for Alzheimer's enzymes enabled by optimal signal transduction with transistors. Analyst 2020; 145:2925-2936. [PMID: 32159165 PMCID: PMC7443690 DOI: 10.1039/c9an01804b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We show that commercially sourced n-channel silicon field-effect transistors (nFETs) operating above their threshold voltage with closed loop feedback to maintain a constant channel current allow a pH readout resolution of (7.2 ± 0.3) × 10-3 at a bandwidth of 10 Hz, or ≈3-fold better than the open loop operation commonly employed by integrated ion-sensitive field-effect transistors (ISFETs). We leveraged the improved nFET performance to measure the change in solution pH arising from the activity of a pathological form of the kinase Cdk5, an enzyme implicated in Alzheimer's disease, and showed quantitative agreement with previous measurements. The improved pH resolution was realized while the devices were operated in a remote sensing configuration with the pH sensing element off-chip and connected electrically to the FET gate terminal. We compared these results with those measured by using a custom-built dual-gate 2D field-effect transistor (dg2DFET) fabricated with 2D semi-conducting MoS2 channels and a signal amplification of 8. Under identical solution conditions the nFET performance approached the dg2DFETs pH resolution of (3.9 ± 0.7) × 10-3. Finally, using the nFETs, we demonstrated the effectiveness of a custom polypeptide, p5, as a therapeutic agent in restoring the function of Cdk5. We expect that the straight-forward modifications to commercially sourced nFETs demonstrated here will lower the barrier to widespread adoption of these remote-gate devices and enable sensitive bioanalytical measurements for high throughput screening in drug discovery and precision medicine applications.
Collapse
Affiliation(s)
- Son T. Le
- Alternative Computing Group, Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Theiss Research, La Jolla, CA 92037
| | - Michelle A. Morris
- Biophysics Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Antonio Cardone
- Information Systems Group, Software and Systems Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA
| | - Nicholas B. Guros
- Biophysics Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Jeffery B. Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Brent A. Sperling
- Chemical Process and Nuclear Measurements Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Curt A. Richter
- Alternative Computing Group, Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Harish C. Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arvind Balijepalli
- Biophysics Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
5
|
Adikaram PR, Zhang JH, Kittock CM, Pandey M, Hassan SA, Lue NG, Wang G, Gucek M, Simonds WF. Development of R7BP inhibitors through cross-linking coupled mass spectrometry and integrated modeling. Commun Biol 2019; 2:338. [PMID: 31531399 PMCID: PMC6744478 DOI: 10.1038/s42003-019-0585-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/21/2019] [Indexed: 02/08/2023] Open
Abstract
Protein-protein interaction (PPI) networks are known to be valuable targets for therapeutic intervention; yet the development of PPI modulators as next-generation drugs to target specific vertices, edges, and hubs has been impeded by the lack of structural information of many of the proteins and complexes involved. Building on recent advancements in cross-linking mass spectrometry (XL-MS), we describe an effective approach to obtain relevant structural data on R7BP, a master regulator of itch sensation, and its interfaces with other proteins in its network. This approach integrates XL-MS with a variety of modeling techniques to successfully develop antibody inhibitors of the R7BP and RGS7/Gβ5 duplex interaction. Binding and inhibitory efficiency are studied by surface plasmon resonance spectroscopy and through an R7BP-derived dominant negative construct. This approach may have broader applications as a tool to facilitate the development of PPI modulators in the absence of crystal structures or when structural information is limited.
Collapse
Affiliation(s)
- Poorni R. Adikaram
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 10/Rm 8C-101, Bethesda, MD 20892 USA
| | - Jian-Hua Zhang
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 10/Rm 8C-101, Bethesda, MD 20892 USA
| | - Claire M. Kittock
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 10/Rm 8C-101, Bethesda, MD 20892 USA
| | - Mritunjay Pandey
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 10/Rm 8C-101, Bethesda, MD 20892 USA
| | - Sergio A. Hassan
- Center for Molecular Modeling, Center for Information Technology, Bldg. 12/Rm 2049, Bethesda, MD 20892 USA
| | - Nicole G. Lue
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 10/Rm 8C-101, Bethesda, MD 20892 USA
| | - Guanghui Wang
- Proteomics Core, National Heart Lung and Blood Institute, National Institutes of Health, Bldg. 10/Rm 8C-103A, Bethesda, MD 20892 USA
| | - Marjan Gucek
- Proteomics Core, National Heart Lung and Blood Institute, National Institutes of Health, Bldg. 10/Rm 8C-103A, Bethesda, MD 20892 USA
| | - William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 10/Rm 8C-101, Bethesda, MD 20892 USA
| |
Collapse
|
6
|
Raju M, Hassan SA, Kavarthapu R, Anbazhagan R, Dufau ML. Characterization of the Phosphorylation Site of GRTH/DDX25 and Protein Kinase A Binding Interface Provides Structural Basis for the Design of a Non-Hormonal Male Contraceptive. Sci Rep 2019; 9:6705. [PMID: 31040297 PMCID: PMC6491591 DOI: 10.1038/s41598-019-42857-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/10/2019] [Indexed: 02/08/2023] Open
Abstract
Gonadotropin Regulated Testicular Helicase (GRTH/DDX25), expressed in the male gonad, is essential for the completion of spermatogenesis. Our early studies revealed a missense mutation (R242H) of GRTH in 5.8% of Japanese patient population with azoospermia. Transfection of the mutant GRTH construct in COS-1 cells leads to loss of the 61 kDa cytoplasmic phospho-species. Mice with knock-in of the human GRTH mutation are sterile and lack sperm with normal androgen and mating behavior. These findings provide an avenue for the development of a non-hormonal male contraceptive. Using site directed mutagenesis and a site-specific phospho-antibody, we have identified T239, structurally adjacent to the patient’s mutant site as the GRTH phospho-site. Molecular modelling provided structural basis for the role of R242 and other critical solvent-exposed residues at the GRTH/PKA interface (E165/K240/D237), on the control of GRTH phosphorylation at T239. Single or double mutations of these residues caused marked reduction or abolition of the phospho-form. These effects can be ascribed to critical disruptions of intramolecular H-bonds at the GRTH/PKA interface, which leads to modest but consequential structural changes that can affect PKA catalytic efficiency. Inhibition of phosphorylation may be achieved by small, drug-like molecules that bind to GRTH and reconfigure the GRTH/PKA interface.
Collapse
Affiliation(s)
- Murugananthkumar Raju
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, OIR/CIT, National Institutes of Health, Bethesda, MD, 20892-4510, USA
| | - Sergio A Hassan
- Center for Molecular Modeling, OIR/CIT, National Institutes of Health, Bethesda, MD, 20892-4510, USA
| | - Raghuveer Kavarthapu
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, OIR/CIT, National Institutes of Health, Bethesda, MD, 20892-4510, USA
| | - Rajakumar Anbazhagan
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, OIR/CIT, National Institutes of Health, Bethesda, MD, 20892-4510, USA
| | - Maria L Dufau
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, OIR/CIT, National Institutes of Health, Bethesda, MD, 20892-4510, USA.
| |
Collapse
|
7
|
Hassan SA. Self-adaptive multiscaling algorithm for efficient simulations of many-protein systems in crowded conditions. Phys Chem Chem Phys 2018; 20:28544-28557. [PMID: 30421760 PMCID: PMC6752035 DOI: 10.1039/c8cp05517c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method is described for the efficient simulation of multiprotein systems in crowded environments. It is based on an adaptive, reversible structural coarsening algorithm that preserves relevant physical features of the proteins across scales. Water is treated implicitly whereas all the other components of the aqueous solution, such as ions, cosolutes, or osmolytes, are treated in atomic detail. The focus is on the analytical adaptation of the solvent model to different levels of molecular resolutions, which allows continuous, on-the-fly transitions between scales. This permits the analytical calculation of forces during dynamics and preserves detailed balance in Monte Carlo simulations. A major computational speedup can be achieved in systems containing hundreds of proteins without cutting off the long-range interactions. The method can be combined with a self-adaptive configurational-bias sampling technique described previously, designed to detect strong, weak, or ultra-weak protein associations and shown to improve sampling efficiency and convergence. The implementation aims to simulate early stages of multimeric complexation, aggregation, or self-assembly. The method can be adopted as the basis for a more general algorithm to identify vertices, edges, and hubs in protein interaction networks or to predict critical steps in signal transduction pathways.
Collapse
Affiliation(s)
- Sergio A Hassan
- Center for Molecular Modeling, OIR/CIT, National Institutes of Health, U.S. DHHS, USA.
| |
Collapse
|
8
|
Amin ND, Zheng Y, Bk B, Shukla V, Skuntz S, Grant P, Steiner J, Bhaskar M, Pant HC. The interaction of Munc 18 (p67) with the p10 domain of p35 protects in vivo Cdk5/p35 activity from inhibition by TFP5, a peptide derived from p35. Mol Biol Cell 2016; 27:3221-3232. [PMID: 27630261 PMCID: PMC5170856 DOI: 10.1091/mbc.e15-12-0857] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 09/07/2016] [Indexed: 11/11/2022] Open
Abstract
In a series of studies, we have identified TFP5, a truncated fragment of p35, the Cdk5 kinase regulatory protein, which inhibits Cdk5/p35 and the hyperactive Cdk5/p25 activities in test tube experiments. In cortical neurons, however, and in vivo in Alzheimer's disease (AD) model mice, the peptide specifically inhibits the Cdk5/p25 complex and not the endogenous Cdk5/p35. To account for the selective inhibition of Cdk5/p25 activity, we propose that the "p10" N-terminal domain of p35, absent in p25, spares Cdk5/p35 because p10 binds to macromolecules (e.g., tubulin and actin) as a membrane-bound multimeric complex that favors p35 binding to Cdk5 and catalysis. To test this hypothesis, we focused on Munc 18, a key synapse-associated neuronal protein, one of many proteins copurifying with Cdk5/p35 in membrane-bound multimeric complexes. Here we show that, in vitro, the addition of p67 protects Cdk5/p35 and has no effect on Cdk5/p25 activity in the presence of TFP5. In cortical neurons transfected with p67siRNA, we also show that TFP5 inhibits Cdk5/p35 activity, whereas in the presence of p67 the activity is protected. It does so without affecting any other kinases of the Cdk family of cyclin kinases. This difference may be of significant therapeutic value because the accumulation of the deregulated, hyperactive Cdk5/p25 complex in human brains has been implicated in pathology of AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Niranjana D Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Yali Zheng
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Binukumar Bk
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Varsha Shukla
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Susan Skuntz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Philip Grant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Joseph Steiner
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Manju Bhaskar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Harish C Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|