1
|
Alli VJ, Yadav P, Suresh V, Jadav SS. Synthetic and Medicinal Chemistry Approaches Toward WEE1 Kinase Inhibitors and Its Degraders. ACS OMEGA 2023; 8:20196-20233. [PMID: 37323408 PMCID: PMC10268025 DOI: 10.1021/acsomega.3c01558] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
WEE1 is a checkpoint kinase critical for mitotic events, especially in cell maturation and DNA repair. Most cancer cells' progression and survival are linked with elevated levels of WEE1 kinase. Thus, WEE1 kinase has become a new promising druggable target. A few classes of WEE1 inhibitors are designed by rationale or structure-based techniques and optimization approaches to identify selective acting anticancer agents. The discovery of the WEE1 inhibitor AZD1775 further emphasized WEE1 as a promising anticancer target. Therefore, the current review provides a comprehensive data on medicinal chemistry, synthetic approaches, optimization methods, and the interaction profile of WEE1 kinase inhibitors. In addition, WEE1 PROTAC degraders and their synthetic procedures, including a list of noncoding RNAs necessary for regulation of WEE1, are also highlighted. From the standpoint of medicinal chemistry, the contents of this compilation serve as an exemplar for the further design, synthesis, and optimization of promising WEE1-targeted anticancer agents.
Collapse
Affiliation(s)
- Vidya Jyothi Alli
- Department
of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
| | - Pawan Yadav
- Department
of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
| | - Vavilapalli Suresh
- Department
of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Surender Singh Jadav
- Department
of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Olawale F, Ogunyemi O, Folorunso IM. Repurposing clinically approved drugs as Wee1 checkpoint kinase inhibitors: an in silico investigation integrating molecular docking, ensemble QSAR modelling and molecular dynamics simulation. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Femi Olawale
- Nano-Gene and Drug Delivery Group, Department of Biochemistry, School of life science, University of KwaZulu Natal, Durban, South Africa
| | - Oludare Ogunyemi
- Human Nutraceuticals and Bioinformatics Research Unit, Department of Biochemistry, Salem University, Lokoja, Nigeria
| | - Ibukun Mary Folorunso
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
| |
Collapse
|
3
|
Discovery of novel inhibitors against main protease (Mpro) of SARS-CoV-2 via virtual screening and biochemical evaluation. Bioorg Chem 2021; 110:104767. [PMID: 33667900 PMCID: PMC7903152 DOI: 10.1016/j.bioorg.2021.104767] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/24/2021] [Accepted: 02/17/2021] [Indexed: 01/19/2023]
Abstract
SARS-CoV-2 is the pathogen that caused the global COVID-19 outbreak in 2020. Promising progress has been made in developing vaccines and antiviral drugs. Antivirals medicines are necessary complements of vaccines for post-infection treatment. The main protease (Mpro) is an extremely important protease in the reproduction process of coronaviruses which cleaves pp1ab over more than 11 cleavage sites. In this work, two active main protease inhibitors were found via docking-based virtual screening and bioassay. The IC50 of compound VS10 was 0.20 μM, and the IC50 of compound VS12 was 1.89 μM. The finding in this work can be helpful to understand the interactions of main protease and inhibitors. The active candidates could be potential lead compounds for future drug design.
Collapse
|
4
|
Du X, Li J, Luo X, Li R, Li F, Zhang Y, Shi J, He J. Structure-activity relationships of Wee1 inhibitors: A review. Eur J Med Chem 2020; 203:112524. [PMID: 32688199 DOI: 10.1016/j.ejmech.2020.112524] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/05/2023]
Abstract
Wee1 kinase plays an important role in regulating G2/M checkpoint and S phase, and the inhibition of it will lead to mitotic catastrophe in cancer cells with p53 mutation or deletion. Therefore, the mechanism of Wee1 kinase in cancer treatment and the development of its inhibitors have become a research hotspot. However, although a variety of Wee1 inhibitors with different scaffolds and considerable activity have been successfully identified, so far no one has systematically summarized the structure-activity relationships (SARs) of Wee1 inhibitors. Previous reviews mainly focused on its mechanism and clinical application. To facilitate the rational design and development of Wee1 inhibitors in the future, this paper systematically summarizes its structural types, SARs and binding modes according to the Wee1 inhibitors reported in scientific journals, and also summarizes the regulatory effect of Wee1 kinase on cell cycle and the progress of its inhibitors in clinical application.
Collapse
Affiliation(s)
- Xingkai Du
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Jian Li
- Department of Pharmacy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Xiaojiao Luo
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Rong Li
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Feng Li
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| | - Jun He
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
5
|
Yu E, Xu Y, Shi Y, Yu Q, Liu J, Xu L. Discovery of novel natural compound inhibitors targeting estrogen receptor α by an integrated virtual screening strategy. J Mol Model 2019; 25:278. [PMID: 31463793 DOI: 10.1007/s00894-019-4156-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022]
Abstract
Estrogen receptor (ER) is a nuclear hormone receptor and plays an important role in mediating the cellular effects of estrogen. ER can be classified into two receptors: estrogen receptor alpha (ERα) and beta (ERβ), and the former is expressed in 50~80% of breast tumors and has been extensively investigated in breast cancer for decades. Excessive exposure to estrogen can obviously stimulate the growth of breast cancers primarily mediated by ERα, and thus anti-estrogen therapies by small molecules are of concern to clinicians and pharmaceutical industry in the treatment of ERα-positive breast cancers. Although a series of estrogen receptor modulators have been developed, these drugs can lead to resistance and side effects. Therefore, the development of small molecule inhibitors with high target specificity has been intensified. In this pursuit, an integrated computer-aided virtual screening technique, including molecular docking and pharmacophore model screening, was used to screen traditional Chinese medicine (TCM) databases. The compounds with high docking scores and fit values were subjected to ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction, and ten hits were identified as potential inhibitors targeting ERα. Molecular docking was used to investigate the binding modes between ERα and three most potent hits, and molecular dynamic simulations were chosen to explore the stability of these complexes. The rank of the predicted binding free energies evaluated by MM/GBSA is consistent with the docking score. These novel scaffolds discovered in the present study can be used as critical starting point in the drug discovery process for treating ERα-positive breast cancer. Graphical abstract .
Collapse
Affiliation(s)
- Enguang Yu
- Department of Chinese Surgery, Jiaxing University Affiliated Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Yueping Xu
- Department of Nursing, Jiaxing University Affiliated Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Yanbo Shi
- Central Laboratory of Molecular Medicine Research Center, Jiaxing University Affiliated Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Qiuyan Yu
- Department of Breast Surgery, Jiaxing University Affiliated Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Jie Liu
- Department of Traditional Chinese Medicine Oncology, Jiaxing University Affiliated Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, Jiangsu, China.
| |
Collapse
|
6
|
Slater O, Kontoyianni M. The compromise of virtual screening and its impact on drug discovery. Expert Opin Drug Discov 2019; 14:619-637. [PMID: 31025886 DOI: 10.1080/17460441.2019.1604677] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Docking and structure-based virtual screening (VS) have been standard approaches in structure-based design for over two decades. However, our understanding of the limitations, potential, and strength of these techniques has enhanced, raising expectations. Areas covered: Based on a survey of reports in the past five years, we assess whether VS: (1) predicts binding poses in agreement with crystallographic data (when available); (2) is a superior screening tool, as often claimed; (3) is successful in identifying chemical scaffolds that can be starting points for subsequent lead optimization cycles. Data shows that knowledge of the target and its chemotypes in postprocessing lead to viable hits in early drug discovery endeavors. Expert opinion: VS is capable of accurate placements in the pocket for the most part, but does not consistently score screening collections accurately. What matters is capitalization on available resources to get closer to a viable lead or optimizable series. Integration of approaches, subjective hit selection guided by knowledge of the receptor or endogenous ligand, libraries driven by experimental guides, validation studies to identify the best docking/scoring that reproduces experimental findings, constraints regarding receptor-ligand interactions, thoroughly designed methodologies, and predefined cutoff scoring criteria strengthen VS's position in pharmaceutical research.
Collapse
Affiliation(s)
- Olivia Slater
- a Department of Pharmaceutical Sciences , Southern Illinois University Edwardsville , Edwardsville , IL , USA
| | - Maria Kontoyianni
- a Department of Pharmaceutical Sciences , Southern Illinois University Edwardsville , Edwardsville , IL , USA
| |
Collapse
|