1
|
Mora Lagares L, Novič M. Recent Advances on P-Glycoprotein (ABCB1) Transporter Modelling with In Silico Methods. Int J Mol Sci 2022; 23:ijms232314804. [PMID: 36499131 PMCID: PMC9740644 DOI: 10.3390/ijms232314804] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
ABC transporters play a critical role in both drug bioavailability and toxicity, and with the discovery of the P-glycoprotein (P-gp), this became even more evident, as it plays an important role in preventing intracellular accumulation of toxic compounds. Over the past 30 years, intensive studies have been conducted to find new therapeutic molecules to reverse the phenomenon of multidrug resistance (MDR) ), that research has found is often associated with overexpression of P-gp, the most extensively studied drug efflux transporter; in MDR, therapeutic drugs are prevented from reaching their targets due to active efflux from the cell. The development of P-gp inhibitors is recognized as a good way to reverse this type of MDR, which has been the subject of extensive studies over the past few decades. Despite the progress made, no effective P-gp inhibitors to reverse multidrug resistance are yet on the market, mainly because of their toxic effects. Computational studies can accelerate this process, and in silico models such as QSAR models that predict the activity of compounds associated with P-gp (or analogous transporters) are of great value in the early stages of drug development, along with molecular modelling methods, which provide a way to explain how these molecules interact with the ABC transporter. This review highlights recent advances in computational P-gp research, spanning the last five years to 2022. Particular attention is given to the use of machine-learning approaches, drug-transporter interactions, and recent discoveries of potential P-gp inhibitors that could act as modulators of multidrug resistance.
Collapse
Affiliation(s)
- Liadys Mora Lagares
- Correspondence: (L.M.L.); (M.N.); Tel.: +386-1-4760-438 (L.M.L.); +386-1-4760-253 (M.N.)
| | - Marjana Novič
- Correspondence: (L.M.L.); (M.N.); Tel.: +386-1-4760-438 (L.M.L.); +386-1-4760-253 (M.N.)
| |
Collapse
|
2
|
Cerruela-García G, Cuevas-Muñoz JM, García-Pedrajas N. Graph-Based Feature Selection Approach for Molecular Activity Prediction. J Chem Inf Model 2022; 62:1618-1632. [PMID: 35315648 PMCID: PMC9006223 DOI: 10.1021/acs.jcim.1c01578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
In the construction
of QSAR models for the prediction of molecular
activity, feature selection is a common task aimed at improving the
results and understanding of the problem. The selection of features
allows elimination of irrelevant and redundant features, reduces the
effect of dimensionality problems, and improves the generalization
and interpretability of the models. In many feature selection applications,
such as those based on ensembles of feature selectors, it is necessary
to combine different selection processes. In this work, we evaluate
the application of a new feature selection approach to the prediction
of molecular activity, based on the construction of an undirected
graph to combine base feature selectors. The experimental results
demonstrate the efficiency of the graph-based method in terms of the
classification performance, reduction, and redundancy compared to
the standard voting method. The graph-based method can be extended
to different feature selection algorithms and applied to other cheminformatics
problems.
Collapse
Affiliation(s)
- Gonzalo Cerruela-García
- Department of Computing and Numerical Analysis, University of Córdoba, Campus de Rabanales, Albert Einstein Building, E-14071 Córdoba, Spain
| | - José Manuel Cuevas-Muñoz
- Department of Computing and Numerical Analysis, University of Córdoba, Campus de Rabanales, Albert Einstein Building, E-14071 Córdoba, Spain
| | - Nicolás García-Pedrajas
- Department of Computing and Numerical Analysis, University of Córdoba, Campus de Rabanales, Albert Einstein Building, E-14071 Córdoba, Spain
| |
Collapse
|
3
|
Mater AC, Coote ML. Explainable Molecular Sets: Using Information Theory to Generate Meaningful Descriptions of Groups of Molecules. J Chem Inf Model 2021; 61:4877-4889. [PMID: 34636543 DOI: 10.1021/acs.jcim.1c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Algorithmically identifying the meaningful similarities between an assortment of molecules is a critical chemical problem, and one which is only gaining in relevance as data-driven chemistry continues to progress. Effectively addressing this challenge can be achieved through a reformulation of the problem into information theory, cluster-based supervised classification, and the implementation of key concepts, particularly information entropy and mutual information. These concepts are combined with unsupervised learning atop learned chemical spaces to generate meaningful labels for arbitrary collections of molecules. An open-source and highly extensible codebase is provided to undertake these experiments, demonstrate the viability of the approach on known clusters, and glean insights into the learned representations of chemical space within message-passing neural networks, an architecture not readily permitting interpretability. This approach facilitates the interoperability between human chemical knowledge and the algorithmically derived insights, which will continue to become more prevalent in the coming years.
Collapse
Affiliation(s)
- Adam C Mater
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Michelle L Coote
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
4
|
Rácz A, Bajusz D, Miranda-Quintana RA, Héberger K. Machine learning models for classification tasks related to drug safety. Mol Divers 2021; 25:1409-1424. [PMID: 34110577 PMCID: PMC8342376 DOI: 10.1007/s11030-021-10239-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022]
Abstract
In this review, we outline the current trends in the field of machine learning-driven classification studies related to ADME (absorption, distribution, metabolism and excretion) and toxicity endpoints from the past six years (2015-2021). The study focuses only on classification models with large datasets (i.e. more than a thousand compounds). A comprehensive literature search and meta-analysis was carried out for nine different targets: hERG-mediated cardiotoxicity, blood-brain barrier penetration, permeability glycoprotein (P-gp) substrate/inhibitor, cytochrome P450 enzyme family, acute oral toxicity, mutagenicity, carcinogenicity, respiratory toxicity and irritation/corrosion. The comparison of the best classification models was targeted to reveal the differences between machine learning algorithms and modeling types, endpoint-specific performances, dataset sizes and the different validation protocols. Based on the evaluation of the data, we can say that tree-based algorithms are (still) dominating the field, with consensus modeling being an increasing trend in drug safety predictions. Although one can already find classification models with great performances to hERG-mediated cardiotoxicity and the isoenzymes of the cytochrome P450 enzyme family, these targets are still central to ADMET-related research efforts.
Collapse
Affiliation(s)
- Anita Rácz
- Plasma Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary.
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary
| | | | - Károly Héberger
- Plasma Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary.
| |
Collapse
|
5
|
Dimensionality analysis in machine learning failure detection models. A case study with LNG compressors. COMPUT IND 2021. [DOI: 10.1016/j.compind.2021.103434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Kim H, Kim E, Lee I, Bae B, Park M, Nam H. Artificial Intelligence in Drug Discovery: A Comprehensive Review of Data-driven and Machine Learning Approaches. BIOTECHNOL BIOPROC E 2021; 25:895-930. [PMID: 33437151 PMCID: PMC7790479 DOI: 10.1007/s12257-020-0049-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
As expenditure on drug development increases exponentially, the overall drug discovery process requires a sustainable revolution. Since artificial intelligence (AI) is leading the fourth industrial revolution, AI can be considered as a viable solution for unstable drug research and development. Generally, AI is applied to fields with sufficient data such as computer vision and natural language processing, but there are many efforts to revolutionize the existing drug discovery process by applying AI. This review provides a comprehensive, organized summary of the recent research trends in AI-guided drug discovery process including target identification, hit identification, ADMET prediction, lead optimization, and drug repositioning. The main data sources in each field are also summarized in this review. In addition, an in-depth analysis of the remaining challenges and limitations will be provided, and proposals for promising future directions in each of the aforementioned areas.
Collapse
Affiliation(s)
- Hyunho Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| | - Eunyoung Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| | - Ingoo Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| | - Bongsung Bae
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| | - Minsu Park
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| | - Hojung Nam
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| |
Collapse
|
7
|
Personalized Body Constitution Inquiry Based on Machine Learning. JOURNAL OF HEALTHCARE ENGINEERING 2020; 2020:8834465. [PMID: 33274038 PMCID: PMC7676967 DOI: 10.1155/2020/8834465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/30/2020] [Indexed: 02/01/2023]
Abstract
Background Body constitution (BC) is the abstract concept indicating the state of a person's health in Traditional Chinese Medicine (TCM). The doctor identifies the body constitution of the patient through inspection and inquiry. Previous research simulates doctors to identify BC types according to a patient's objective physical indicators. However, the lack of subjective feeling information can reduce the accuracy of the machine to imitate the doctor's diagnosis. The Constitution in Chinese Medicine Questionnaire (CCMQ) is used to collect subjective information but suffers from low acquisition efficiency. Methods This paper presents a personalized body constitution inquiry method based on a machine learning technique. It employs a random generator, a feature extractor, and a classifier to simulate the doctor inquiry and generate a personalized questionnaire. Specifically, the feature extractor evaluates and sorts the question of the constitution in the CCMQ based on the recognition results of the tongue coating image of patients. The sorted questions and relevant BC label are inputted into the classifier; the best questions are screened out for patients. Results The experimental results show that our method can select personalized questions from the CCMQ for the patients, significantly reducing the time and the number of questions to answer. It also improves the accuracy of recognizing BC. Compared with the CCMQ, patients had 68.3% fewer questions to answer and the time occupied by answering is reduced by 80.3%. Conclusions The proposed method can simulate the doctor's inquiry and pick out personalized questions for patients. It can act as auxiliary diagnosis tools to collect subjective patient feelings and help make further judgments on the patient's BC types.
Collapse
|
8
|
Esposito C, Wang S, Lange UEW, Oellien F, Riniker S. Combining Machine Learning and Molecular Dynamics to Predict P-Glycoprotein Substrates. J Chem Inf Model 2020; 60:4730-4749. [DOI: 10.1021/acs.jcim.0c00525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Carmen Esposito
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Shuzhe Wang
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Udo E. W. Lange
- Neuroscience Discovery, Medicinal Chemistry, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Frank Oellien
- Neuroscience Discovery, Medicinal Chemistry, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
9
|
George A, Purnaprajna M, Athri P. Laplacian score and genetic algorithm based automatic feature selection for Markov State Models in adaptive sampling based molecular dynamics. PEERJ PHYSICAL CHEMISTRY 2020. [DOI: 10.7717/peerj-pchem.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Adaptive sampling molecular dynamics based on Markov State Models use short parallel MD simulations to accelerate simulations, and are proven to identify hidden conformers. The accuracy of the predictions provided by it depends on the features extracted from the simulated data that is used to construct it. The identification of the most important features in the trajectories of the simulated system has a considerable effect on the results.
Methods
In this study, we use a combination of Laplacian scoring and genetic algorithms to obtain an optimized feature subset for the construction of the MSM. The approach is validated on simulations of three protein folding complexes, and two protein ligand binding complexes.
Results
Our experiments show that this approach produces better results when the number of samples is significantly lesser than the number of features extracted. We also observed that this method mitigates over fitting that occurs due to high dimensionality of large biosystems with shorter simulation times.
Collapse
Affiliation(s)
- Anu George
- Department of Computer Science & Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India
| | - Madhura Purnaprajna
- Department of Computer Science & Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India
| | - Prashanth Athri
- Department of Computer Science & Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India
| |
Collapse
|
10
|
Cerruela-García G, Pérez-Parra Toledano J, de Haro-García A, García-Pedrajas N. Influence of feature rankers in the construction of molecular activity prediction models. J Comput Aided Mol Des 2020; 34:305-325. [PMID: 31893338 DOI: 10.1007/s10822-019-00273-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
In the construction of activity prediction models, the use of feature ranking methods is a useful mechanism for extracting information for ranking features in terms of their significance to develop predictive models. This paper studies the influence of feature rankers in the construction of molecular activity prediction models; for this purpose, a comparative study of fourteen rankings methods for feature selection was conducted. The activity prediction models were constructed using four well-known classifiers and a wide collection of datasets. The ranking algorithms were compared considering the performance of these classifiers using different metrics and the consistency of the ranked features.
Collapse
Affiliation(s)
- Gonzalo Cerruela-García
- Department of Computing and Numerical Analysis, University of Córdoba, Campus de Rabanales, Albert Einstein Building, 14071, Córdoba, Spain.
| | - José Pérez-Parra Toledano
- Department of Computing and Numerical Analysis, University of Córdoba, Campus de Rabanales, Albert Einstein Building, 14071, Córdoba, Spain
| | - Aída de Haro-García
- Department of Computing and Numerical Analysis, University of Córdoba, Campus de Rabanales, Albert Einstein Building, 14071, Córdoba, Spain
| | - Nicolás García-Pedrajas
- Department of Computing and Numerical Analysis, University of Córdoba, Campus de Rabanales, Albert Einstein Building, 14071, Córdoba, Spain
| |
Collapse
|