1
|
Zahraee H, Mohammadi F, Parvaee E, Khoshbin Z, Arab SS. Reducing the assemblies of amyloid-beta multimers by sodium dodecyl sulfate surfactant at concentrations lower than critical micelle concentration: molecular dynamics simulation exploration. J Biomol Struct Dyn 2024; 42:8673-8687. [PMID: 37599504 DOI: 10.1080/07391102.2023.2247086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Amyloid-β peptide, the predominant proteinaceous component of senile plaques, is responsible for the incidence of Alzheimer's disease (AD), an age-associated neurodegenerative disorder. Specifically, the amyloid-β(1-42) (Aβ1-42) isoform, known for its high toxicity, is the predominant biomarker for the preliminary diagnosis of AD. The aggregation of the Aβ1-42 peptides can be affected by the components of the cellular medium through changing their structures and molecular interactions. In this study, we investigated the effect of sodium dodecyl sulfate (SDS) at much lower concentrations than the critical micelle concentration (CMC) on Aβ1-42 aggregation. For this purpose, we studied mono-, di-, tri- and tetramers of Aβ1-42 peptide in two different concentrations of SDS molecules (10 and 40 molecules) using a 300 ns molecular dynamics simulation for each system. The distance between the center of mass (COM) of Aβ1-42 peptides confirms that an increase in the number of SDS molecules decreases their aggregation probability due to greater interaction with SDS molecules. Besides, the less compactness parameter reveals the reduced aggregation probability of Aβ1-42 peptides. Based on the energetic FEL landscapes, SDS molecules with the concentration closer to the CMC are an effective inhibitory agent to prevent the formation of Aβ1-42 fibrils. Also, the aggregation direction of the peptide pairs can be predicted by determining the direction of the accumulation-deterrent forces.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hamed Zahraee
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mohammadi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Parvaee
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zahra Khoshbin
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Llorent-Martínez EJ, Ruiz-Medina A, Terzic M, Sinan KI, Koyuncu I, Egi K, Nilofar N, Zengin G. Chemical composition and biological activities of Cucurbita okeechobeensis extracts from its aerial parts, seeds, and fruit shells. Arch Pharm (Weinheim) 2024; 357:e2300663. [PMID: 38408265 DOI: 10.1002/ardp.202300663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024]
Abstract
The Cucurbita genus has been widely used in traditional medicinal systems across different countries. In this study, we aimed to investigate the chemical composition, antioxidant properties, enzyme inhibitory, and cytotoxic effects of methanol and aqueous extracts obtained from the aerial parts, seeds, and fruit shells of Cucurbita okeechobeensis. Antioxidant properties were assessed using various chemical methods, including radical quenching (DPPH and ABTS), reducing power (CUPRAC and FRAP), metal chelation, and phosphomolybdenum assays. The extracts' enzyme inhibitory effects were tested against cholinesterase, amylase, glucosidase, and tyrosinase, whereas different cancer cell lines were used for the cytotoxicity study. The chemical composition, evaluated by HPLC-ESI-MSn, showed that the most abundant compounds were flavonoids (mainly quercetin glycosides) followed by phenolic acids (mostly caffeic acid derivatives). The aerial parts displayed stronger antioxidant ability than the seed and fruit shells, in agreement with the highest content in phytochemicals. In addition, the methanol extracts presented the highest bioactivity and content in phytochemicals; among them, the extract of the aerial part exhibited significant cytotoxic effects on cancer cell lines and induced apoptosis. Overall, our results suggest that C. okeechobeensis is a valuable source of bioactive compounds for the pharmaceutical and nutraceutical industries.
Collapse
Affiliation(s)
| | - Antonio Ruiz-Medina
- Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, Jaén, Spain
| | - Milena Terzic
- Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | | | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Kadir Egi
- Dialysis Program, Vocational School of Health Services, Harran University, Sanliurfa, Turkey
| | - Nilofar Nilofar
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
3
|
Bhattacharjee A, Roy PK. Conjoint hepatobiliary-enterohepatic cycles for amyloid excretion and enhancing its drug-induced clearance: a systems biology approach to Alzheimer's disease. J Biomol Struct Dyn 2023; 41:10507-10524. [PMID: 36510663 DOI: 10.1080/07391102.2022.2154842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
The liver is the major organ responsible for metabolism of amyloid-beta, the primary toxic misfolded protein responsible for Alzheimer's disease (AD). The present study focuses on the crucial role of liver in AD. We have developed a framework that formulates and integrates two reciprocal transport processes of amyloid, via hepato-biliary and enterohepatic circulations (EHC). Our system analysis approach shows that activating the liver X-receptor (LXR) can reduce amyloid-beta formation by increasing expression of the genes: ATP-binding-cassette-transporter (ABCA1) and Stearoyl-CoA-desaturase (SCD). Besides, activating the pregnane-X-receptor (PXR) can enhance the clearance of amyloid-beta by increasing the expression of the genes: ATP-Binding-Cassette-Superfamily-G-member-2 (ABCG2) and multidrug-resistance protein-1 (MDR1). We also identified receptor-like apical sodium-dependent bile-acid transporter (ASBT) of intestinal enterocyte, showing affinity towards amyloid-beta, suggesting amyloid-beta's possible reuptake from intestinal contents to the systemic circulation through this receptor. Further, we have performed protein-protein interaction to evaluate the binding affinity of amyloid-beta to these receptors. Moreover, we undertook molecular docking and molecular dynamic simulation of some repurposed drugs (rifampicin, 24-hydroxycholesterols, resveratrol, cilostazol) which can target the aforesaid receptors to enhance amyloid-beta's fecal clearance, reduce amyloid-beta formation, and prevent the reuptake of amyloid-beta from intestinal feces. Additionally, network pharmacology and synergism analysis were utilized to validate our hypothesis and identify the drug combinations, respectively. Gene-ontology investigation, network pharmacology, and consolidated pathway analysis validate the alteration of the above-mentioned gene expression profiles. Furthermore, our neuropharmacological synergism study identifies the optimal combination of the repurposed drugs. Finally, our findings on candidate drugs are substantiated by clinical-trial outcomes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anindita Bhattacharjee
- School of Bio-Medical Engineering, Indian Institute of Technology (B.H.U.), Varanasi, India
| | - Prasun K Roy
- School of Bio-Medical Engineering, Indian Institute of Technology (B.H.U.), Varanasi, India
| |
Collapse
|
4
|
Waiker DK, Verma A, A GT, Singh N, Roy A, Dilnashin H, Tiwari V, Trigun SK, Singh SP, Krishnamurthy S, Lama P, Davisson VJ, Shrivastava SK. Design, Synthesis, and Biological Evaluation of Piperazine and N-Benzylpiperidine Hybrids of 5-Phenyl-1,3,4-oxadiazol-2-thiol as Potential Multitargeted Ligands for Alzheimer's Disease Therapy. ACS Chem Neurosci 2023. [PMID: 37216500 DOI: 10.1021/acschemneuro.3c00245] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Our present work demonstrates the successful design and synthesis of a new class of compounds based upon a multitargeted directed ligand design approach to discover new agents for use in Alzheimer's disease (AD). All the compounds were tested for their in vitro inhibitory potential against human acetylcholinesterase (hAChE), human butylcholinesterase (hBChE), β-secretase-1 (hBACE-1), and amyloid β (Aβ) aggregation. Compounds 5d and 5f have shown hAChE and hBACE-1 inhibition comparable to donepezil, while hBChE inhibition was comparable to rivastigmine. Compounds 5d and 5f also demonstrated a significant reduction in the formation of Aβ aggregates through the thioflavin T assay and confocal, atomic force, and scanning electron microscopy studies and significantly displaced the total propidium iodide, that is, 54 and 51% at 50 μM concentrations, respectively. Compounds 5d and 5f were devoid of neurotoxic liabilities against RA/BDNF (RA = retinoic acid; BDNF = brain-derived neurotrophic factor)-differentiated SH-SY5Y neuroblastoma cell lines at 10-80 μM concentrations. In both the scopolamine- and Aβ-induced mouse models for AD, compounds 5d and 5f demonstrated significant restoration of learning and memory behaviors. A series of ex vivo studies of hippocampal and cortex brain homogenates showed that 5d and 5f elicit decreases in AChE, malondialdehyde, and nitric oxide levels, an increase in glutathione level, and reduced levels of pro-inflammatory cytokines, tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) mRNA. The histopathological examination of mice revealed normal neuronal appearance in the hippocampal and cortex regions of the brain. Western blot analysis of the same tissue indicated a reduction in Aβ, amyloid precursor protein (APP)/Aβ, BACE-1, and tau protein levels, which were non-significant compared to the sham group. The immunohistochemical analysis also showed significantly lower expression of BACE-1 and Aβ levels, which was comparable to donepezil-treated group. Compounds 5d and 5f represent new lead candidates for developing AD therapeutics.
Collapse
Affiliation(s)
- Digambar Kumar Waiker
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Akash Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Gajendra T A
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Namrata Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anima Roy
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Surya P Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Prem Lama
- CSIR - Indian Institute of Petroleum, Tech. Block, Mohkampur, Dehradun 248005, Uttarakhand, India
| | - Vincent Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 479047, United States
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
5
|
Mancipe JC, Vargas-Pinto P, Rodríguez OE, Borrego-Muñoz P, Castellanos Londoño I, Ramírez D, Piñeros LG, Mejía MC, Pombo LM. Anti-Inflammatory Effect of Izalpinin Derived from Chromolaena leivensis: λ-Carrageenan-Induced Paw Edema and In Silico Model. Molecules 2023; 28:molecules28093722. [PMID: 37175132 PMCID: PMC10179959 DOI: 10.3390/molecules28093722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The flavonoid izalpinin was isolated from the aerial parts of Chromolaena leivensis. Its structural determination was carried out using MS and NMR spectroscopic techniques (1H, 13C). This compound was evaluated for its anti-inflammatory effect in a rat model on λ-carrageenan-induced plantar edema. Paw inflammation was measured at one-hour intervals for seven hours following the administration of λ-carrageenan. Serum creatine kinase (CK) levels were evaluated, obtaining statistically significant results with the treatments at doses of 10 mg/kg (* p < 0.01) and 20 mg/kg (** p < 0.005). The anti-inflammatory effect of the compound was evaluated by using plethysmography, and the results showed significant differences at the three concentrations (10 mg/kg, 20 mg/kg, 40 mg/kg) in the first and third hours after treatment. * p < 0.05; ** p < 0.001; **** p < 0.0001 vs. the negative control group treated with vehicle (DMSO). Lastly, molecular docking analyses reveal that izalpinin has a strong binding affinity with five target proteins involved in the inflammatory process. The analysis using molecular dynamics allowed demonstrating that the ligand-protein complexes present acceptable stability, with RMSD values within the allowed range.
Collapse
Affiliation(s)
- Juan C Mancipe
- Facultad de Ciencias Agropecuarias, Universidad de la Salle, Bogotá 110141, Colombia
| | - Pedro Vargas-Pinto
- Facultad de Ciencias Agropecuarias, Universidad de la Salle, Bogotá 110141, Colombia
| | - Oscar E Rodríguez
- Facultad de Ingeniería, Universidad del Bosque, Bogotá 110121, Colombia
- Escuela de Medicina, Fundación Universitaria Juan N. Corpas, Bogotá 110311, Colombia
| | | | | | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - Luis G Piñeros
- Facultad de Ingeniería, Universidad del Bosque, Bogotá 110121, Colombia
| | | | - Luis M Pombo
- Facultad de Ingeniería, Universidad del Bosque, Bogotá 110121, Colombia
| |
Collapse
|
6
|
Waiker D, Verma A, Saraf P, T.A. G, Krishnamurthy S, Chaurasia RN, Shrivastava SK. Development and Evaluation of Some Molecular Hybrids of N-(1-Benzylpiperidin-4-yl)-2-((5-phenyl-1,3,4-oxadiazol-2-yl)thio) as Multifunctional Agents to Combat Alzheimer's Disease. ACS OMEGA 2023; 8:9394-9414. [PMID: 36936338 PMCID: PMC10018501 DOI: 10.1021/acsomega.2c08061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
A series of some novel compounds (SD-1-17) were designed following a molecular hybridization approach, synthesized, and biologically tested for hAChE, hBChE, hBACE-1, and Aβ aggregation inhibition potential to improve cognition and memory functions associated with Alzheimer's disease. Compounds SD-4 and SD-6 have shown multifunctional inhibitory profiles against hAChE, hBChE, and hBACE-1 enzymes in vitro. Compounds SD-4 and SD-6 have also shown anti-Aβ aggregation potential in self- and acetylcholinesterase (AChE)-induced thioflavin T assay. Both compounds have shown a significant propidium iodide (PI) displacement from the cholinesterase-peripheral active site (ChE-PAS) region with excellent blood-brain barrier (BBB) permeability and devoid of neurotoxic liabilities. Compound SD-6 ameliorates cognition and memory functions in scopolamine- and Aβ-induced behavioral rat models of Alzheimer's disease (AD). Ex vivo biochemical estimation revealed a significant decrease in malonaldehyde (MDA) and AChE levels, while a substantial increase of superoxide dismutase (SOD), catalase, glutathione (GSH), and ACh levels is seen in the hippocampal brain homogenates. The histopathological examination of brain slices also revealed no sign of neuronal or any tissue damage in the SD-6-treated experimental animals. The in silico molecular docking results of compounds SD-4 and SD-6 showed their binding with hChE-catalytic anionic site (CAS), PAS, and the catalytic dyad residues of the hBACE-1 enzymes. A 100 ns molecular dynamic simulation study of both compounds with ChE and hBACE-1 enzymes also confirmed the ligand-protein complex's stability, while quikprop analysis suggested drug-like properties of the compounds.
Collapse
Affiliation(s)
- Digambar
Kumar Waiker
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
and Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Akash Verma
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
and Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Poorvi Saraf
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
and Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Gajendra T.A.
- Neurotherapeutics
Research Laboratory, Department of Pharmaceutical Engineering and
Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics
Research Laboratory, Department of Pharmaceutical Engineering and
Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Rameshwar Nath Chaurasia
- Institute
of Medical Sciences, Faculty of Medicine, Department of Neurology, Banaras Hindu University, Varanasi 221005, India
| | - Sushant Kumar Shrivastava
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
and Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| |
Collapse
|
7
|
Tan S, Lu R, Yao D, Wang J, Gao P, Xie G, Liu H, Yao X. Identification of LRRK2 Inhibitors through Computational Drug Repurposing. ACS Chem Neurosci 2023; 14:481-493. [PMID: 36649061 DOI: 10.1021/acschemneuro.2c00672] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder that affects more than ten million people worldwide. However, the current PD treatments are still limited and alternative treatment strategies are urgently required. Leucine-rich repeat kinase 2 (LRRK2) has been recognized as a promising target for PD treatment. However, there are no approved LRRK2 inhibitors on the market. To rapidly identify potential drug repurposing candidates that inhibit LRRK2 kinase, we report a structure-based drug repurposing workflow that combines molecular docking, recursive partitioning model, molecular dynamics (MD) simulation, and molecular mechanics-generalized Born surface area (MM-GBSA) calculation. Thirteen compounds screened from our drug repurposing workflow were further evaluated through the experiment. The experimental results showed six drugs (Abivertinib, Aumolertinib, Encorafenib, Bosutinib, Rilzabrutinib, and Mobocertinib) with IC50 less than 5 μM that were identified as potential LRRK2 kinase inhibitors. The most potent compound Abivertinib showed potent inhibitions with IC50 toward G2019S mutation and wild-type LRRK2 of 410.3 nM and 177.0 nM, respectively. Our combination screening strategy had a 53% hit rate in this repurposing task. MD simulations and MM-GBSA free energy analysis further revealed the atomic binding mechanism between the identified drugs and G2019S LRRK2. In summary, the results showed that our drug repurposing workflow could be used to identify potent compounds for LRRK2. The potent inhibitors discovered in our work can be a starting point to develop more effective LRRK2 inhibitors.
Collapse
Affiliation(s)
- Shuoyan Tan
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, China
| | - Ruiqiang Lu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen518060, China
| | - Jun Wang
- Ping An Healthcare Technology, Beijing100000, China
| | - Peng Gao
- Ping An Healthcare Technology, Beijing100000, China
| | - Guotong Xie
- Ping An Healthcare Technology, Beijing100000, China
| | - Huanxiang Liu
- Faculty of Applied Science, Macao Polytechnic University, Macao, China
| | - Xiaojun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| |
Collapse
|
8
|
In Vitro, In Vivo, and In Silico Analyses of Molecular Anti-Pigmentation Mechanisms of Selected Thai Rejuvenating Remedy and Bioactive Metabolites. Molecules 2023; 28:molecules28030958. [PMID: 36770624 PMCID: PMC9920523 DOI: 10.3390/molecules28030958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Thai rejuvenating remedies are mixed herbal formulas promoting longevity. Due to the complexity, the biological activities of these remedies are minimal. Therefore, in this study, the authors evaluated the anti-pigmentation effect at the molecular level of the selected Thai rejuvenating remedy to fulfill the knowledge gap. First, the authors found that the selected remedy showed promising activity against the tyrosinase enzyme with an IC50 value of 9.41 µg/mL. In the comparison, kojic acid (positive control) exhibited an IC50 value of 3.92 µg/mL against the same enzyme. Later, the authors identified glabridin as a bioactive molecule against tyrosinase with an IC50 value of 0.08 µg/mL. However, ethyl p-methoxycinnamate was the most abundant metabolite found in the remedy. The authors also found that the selected remedy and glabridin reduced the melanin content in the cell-based assay (B16F1) but not in the zebrafish larvae experiment. Finally, the authors conducted a computational investigation through molecular docking proposing a theoretical molecular interplay between glabridin, ethyl p-methoxycinnamate, and target proteins (tyrosinase and melanocortin-1 receptor, MC1R). Hence, in this study, the authors reported the molecular anti-pigmentation mechanism of the selected Thai rejuvenating remedy for the first time by combining the results from in silico, in vitro, and in vivo experiments.
Collapse
|
9
|
Borrego-Muñoz P, Becerra LD, Ospina F, Coy-Barrera E, Quiroga D. Synthesis ( Z) vs ( E) Selectivity, Antifungal Activity against Fusarium oxysporum, and Structure-Based Virtual Screening of Novel Schiff Bases Derived from l-Tryptophan. ACS OMEGA 2022; 7:24714-24726. [PMID: 35874194 PMCID: PMC9301946 DOI: 10.1021/acsomega.2c02614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Schiff bases are widely used molecules due to their potential biological activity. In this manuscript, we presented the synthesis and NMR study of new enamine Schiff bases derived from l-tryptophan, showing that the Z-form of the enamine is the main tautomeric form for aliphatic precursors. The DFT-B3LYP methodology at the 6-311+G**(d,p) level suggested that the tautomeric imine forms are less stable than the corresponding enamine forms. Their isomerism depends on the formation of intramolecular hydrogen bonds and steric factors associated with the starting carbonyl precursors. The in vitro biological activity tests against Fusarium oxysporum revealed that acetylacetone derivatives are the most active agents (IC50 < 0.9 mM); however, the antifungal activity could be disfavored by bulky groups on ester and enamine moieties. Finally, the structure-based virtual screening through molecular docking and MM-GBSA rescoring revealed that Schiff bases 3e, 3g, and 3j behave putatively as binders for target proteins involved in the life processes of F. oxysporum. In this sense, molecular dynamics analysis showed that the ligand-protein complexes have good stability with root-mean-square deviation (RMSD) values within the allowed range. Therefore, the present study paves the way for designing new antifungal compounds based on l-tryptophan-derived Schiff bases.
Collapse
|
10
|
Obaid RJ, Naeem N, Mughal EU, Al-Rooqi MM, Sadiq A, Jassas RS, Moussa Z, Ahmed SA. Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase. RSC Adv 2022; 12:19764-19855. [PMID: 35919585 PMCID: PMC9275557 DOI: 10.1039/d2ra03081k] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 01/15/2023] Open
Abstract
Heterocycles are the key structures in organic chemistry owing to their immense applications in the biological, chemical, and pharmaceutical fields. Heterocyclic compounds perform various noteworthy functions in nature, medication, innovation etc. Most frequently, pure nitrogen heterocycles or various positional combinations of nitrogen, oxygen, and sulfur atoms in five or six-membered rings can be found. Inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes is a popular strategy for the management of numerous mental diseases. In this context, cholinesterase inhibitors are utilized to relieve the symptoms of neurological illnesses like dementia and Alzheimer's disease (AD). The present review focuses on various heterocyclic scaffolds and their role in designing and developing new potential AChE and BChE inhibitors to treat AD. Moreover, a detailed structure-activity relationship (SAR) has been established for the future discovery of novel drugs for the treatment of AD. Most of the heterocyclic motifs have been used in the design of new potent cholinesterase inhibitors. In this regard, this review is an endeavor to summarize the biological and chemical studies over the past decade (2010-2022) describing the pursuit of new N, O and S containing heterocycles which can offer a rich supply of promising AChE and BChE inhibitory activities.
Collapse
Affiliation(s)
- Rami J Obaid
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | | | - Munirah M Al-Rooqi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot-51300 Pakistan
| | - Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P.O. Box 15551 Al Ain Abu Dhabi United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
11
|
Vlasiou MC, Hatahta AA. Spectroscopic evaluation of chalcone derivatives and their zinc metal complexes: A combined experimental and computational approach studying the interactions of the complexes with the serum albumin. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Hajbabaie R, Harper MT, Rahman T. Establishing an Analogue Based In Silico Pipeline in the Pursuit of Novel Inhibitory Scaffolds against the SARS Coronavirus 2 Papain-Like Protease. Molecules 2021; 26:1134. [PMID: 33672721 PMCID: PMC7924369 DOI: 10.3390/molecules26041134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 01/18/2023] Open
Abstract
The ongoing coronavirus pandemic has been a burden on the worldwide population, with mass fatalities and devastating socioeconomic consequences. It has particularly drawn attention to the lack of approved small-molecule drugs to inhibit SARS coronaviruses. Importantly, lessons learned from the SARS outbreak of 2002-2004, caused by severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), can be applied to current drug discovery ventures. SARS-CoV-1 and SARS-CoV-2 both possess two cysteine proteases, the main protease (Mpro) and the papain-like protease (PLpro), which play a significant role in facilitating viral replication, and are important drug targets. The non-covalent inhibitor, GRL-0617, which was found to inhibit replication of SARS-CoV-1, and more recently SARS-CoV-2, is the only PLpro inhibitor co-crystallised with the recently solved SARS-CoV-2 PLpro crystal structure. Therefore, the GRL-0617 structural template and pharmacophore features are instrumental in the design and development of more potent PLpro inhibitors. In this work, we conducted scaffold hopping using GRL-0617 as a reference to screen over 339,000 ligands in the chemical space using the ChemDiv, MayBridge, and Enamine screening libraries. Twenty-four distinct scaffolds with structural and electrostatic similarity to GRL-0617 were obtained. These proceeded to molecular docking against PLpro using the AutoDock tools. Of two compounds that showed the most favourable predicted binding affinities to the target site, as well as comparable protein-ligand interactions to GRL-0617, one was chosen for further analogue-based work. Twenty-seven analogues of this compound were further docked against the PLpro, which resulted in two additional hits with promising docking profiles. Our in silico pipeline consisted of an integrative four-step approach: (1) ligand-based virtual screening (scaffold-hopping), (2) molecular docking, (3) an analogue search, and, (4) evaluation of scaffold drug-likeness, to identify promising scaffolds and eliminate those with undesirable properties. Overall, we present four novel, and lipophilic, scaffolds obtained from an exhaustive search of diverse and uncharted regions of chemical space, which may be further explored in vitro through structure-activity relationship (SAR) studies in the search for more potent inhibitors. Furthermore, these scaffolds were predicted to have fewer off-target interactions than GRL-0617. Lastly, to our knowledge, this work contains the largest ligand-based virtual screen performed against GRL-0617.
Collapse
Affiliation(s)
| | | | - Taufiq Rahman
- Department of Pharmacology, Cambridge University, Tennis Court Road, Cambridge CB2 1PD, UK; (R.H.); (M.T.H.)
| |
Collapse
|
13
|
Abstract
Alzheimer's disease (AD) is a significant health crisis, and current treatments provide only limited benefits to cognition at the cost of serious side effects. Recently, virtual screening techniques such as ligand-based virtual screening (LBVS) and structure-based virtual screening (SBVS) have emerged as powerful drug discovery tools for identifying potential ligands of a biological target from a large database of chemical structures. The cholinesterases are an AD target particularly well suited for drug discovery using virtual screening due to their well-characterized active sites and comprehensive understanding of the structure-activity relationships of existing inhibitors. Over the last 5 years (2015-2020), at least 15 studies have used virtual screening techniques to discover potent new cholinesterase inhibitors. Herein we review how LBVS and SBVS have been applied individually or in tandem to discover novel acetylcholinesterase and butyrylcholinesterase inhibitors for AD, and highlight the need to confirm in vitro activity of screening compounds.
Collapse
Affiliation(s)
- Jared A. Miles
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin P. Ross
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
14
|
Adeowo FY, Lawal MM, Kumalo HM. Design and Development of Cholinesterase Dual Inhibitors towards Alzheimer's Disease Treatment: A Focus on Recent Contributions from Computational and Theoretical Perspective. ChemistrySelect 2020. [DOI: 10.1002/slct.202003573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Fatima Y. Adeowo
- Discipline of Medical Biochemistry School of Laboratory Medicine and Medical Science University of KwaZulu-Natal Durban 4001 South Africa
| | - Monsurat M. Lawal
- Discipline of Medical Biochemistry School of Laboratory Medicine and Medical Science University of KwaZulu-Natal Durban 4001 South Africa
| | - Hezekiel M. Kumalo
- Discipline of Medical Biochemistry School of Laboratory Medicine and Medical Science University of KwaZulu-Natal Durban 4001 South Africa
| |
Collapse
|
15
|
Design and synthesis of multi-target directed 1,2,3-triazole-dimethylaminoacryloyl-chromenone derivatives with potential use in Alzheimer's disease. BMC Chem 2020; 14:64. [PMID: 33134975 PMCID: PMC7592376 DOI: 10.1186/s13065-020-00715-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/08/2020] [Indexed: 02/01/2023] Open
Abstract
To discover multifunctional agents for the treatment of Alzheimer's disease (AD), a new series of 1,2,3-triazole-chromenone derivatives were designed and synthesized based on the multi target-directed ligands approach. The in vitro biological activities included acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition as well as anti-Aβ aggregation, neuroprotective effects, and metal-chelating properties. The results indicated a highly selective BuChE inhibitory activity with an IC50 value of 21.71 μM for compound 10h as the most potent compound. Besides, compound 10h could inhibit self-induced Aβ1–42 aggregation and AChE-induced Aβ aggregation with 32.6% and 29.4% inhibition values, respectively. The Lineweaver–Burk plot and molecular modeling study showed that compound 10h targeted both the catalytic active site (CAS) and peripheral anionic site (PAS) of BuChE. It should be noted that compound 10h was able to chelate biometals. Thus, the designed scaffold could be considered as multifunctional agents in AD drug discovery developments. ![]()
Collapse
|