El-Jundi I, Daoud S, Taha MO. Discovery of novel chemotype inhibitors targeting Anaplastic Lymphoma Kinase receptor through ligand-based pharmacophore modelling.
SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024;
35:795-815. [PMID:
39382553 DOI:
10.1080/1062936x.2024.2406398]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
Anaplastic Lymphoma Kinase (ALK) is a receptor tyrosine kinase within the insulin receptor superfamily. Alterations in ALK, such as rearrangements, mutations, or amplifications, have been detected in various tumours, including lymphoma, neuroblastoma, and non-small cell lung cancer. In this study, we outline a computational workflow designed to uncover new inhibitors of ALK. This process starts with a ligand-based exploration of the pharmacophoric space using 13 diverse sets of ALK inhibitors. Subsequently, quantitative structure-activity relationship (QSAR) modelling is employed in combination with a genetic function algorithm to identify the optimal combination of pharmacophores and molecular descriptors capable of elucidating variations in anti-ALK bioactivities within a compiled list of inhibitors. The successful QSAR model revealed three pharmacophores, two of which share three similar features, prompting their merger into a single pharmacophore model. The merged pharmacophore was used as a 3D search query to mine the National Cancer Institute (NCI) database for novel anti-ALK leads. Subsequent in vitro bioassay of the top 40 hits identified two compounds with low micromolar IC50 values. Remarkably, one of the identified leads possesses a novel chemotype compared to known ALK inhibitors.
Collapse