1
|
Liu X, Brooks Iii CL. Enhanced Sampling of Buried Charges in Free Energy Calculations Using Replica Exchange with Charge Tempering. J Chem Theory Comput 2024; 20:1051-1061. [PMID: 38232295 PMCID: PMC11275198 DOI: 10.1021/acs.jctc.3c00993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Buried ionizable groups in proteins often play important structural and functional roles. However, it is generally challenging to study the detailed molecular mechanisms solely based on experimental measurements. Free energy calculations using atomistic simulations, on the other hand, complement experimental studies and can provide high temporal and spatial resolution information that can lead to mechanistic insights. Nevertheless, it is also well recognized that sufficient sampling of such atomistic simulations can be challenging, considering that structural changes related to the buried charges may be very slow. In the present study, we describe a simple but effective enhanced sampling technique called replica exchange with charge tempering (REChgT) with a novel free energy method, multisite λ dynamics (MSλD), to study two systems containing buried charges, pKa prediction of a small molecule, orotate, in complex with the dihydroorotate dehydrogenase, and relative stability of a Glu-Lys pair buried in the hydrophobic core of two variants of Staphylococcal nuclease. Compared to the original MSλD simulations, the usage of REChgT dramatically increases sampling in both conformational and alchemical spaces, which directly translates into a significant reduction of wall time to converge the free energy calculations. This study highlights the importance of sufficient sampling toward developing improved free energy methods.
Collapse
Affiliation(s)
- Xiaorong Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles L Brooks Iii
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Zhao M, Kognole AA, Jo S, Tao A, Hazel A, MacKerell AD. GPU-specific algorithms for improved solute sampling in grand canonical Monte Carlo simulations. J Comput Chem 2023; 44:1719-1732. [PMID: 37093676 PMCID: PMC10330275 DOI: 10.1002/jcc.27121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
The Grand Canonical Monte Carlo (GCMC) ensemble defined by the excess chemical potential, μex , volume, and temperature, in the context of molecular simulations allows for variations in the number of particles in the system. In practice, GCMC simulations have been widely applied for the sampling of rare gasses and water, but limited in the context of larger molecules. To overcome this limitation, the oscillating μex GCMC method was introduced and shown to be of utility for sampling small solutes, such as formamide, propane, and benzene, as well as for ionic species such as monocations, acetate, and methylammonium. However, the acceptance of GCMC insertions is low, and the method is computationally demanding. In the present study, we improved the sampling efficiency of the GCMC method using known cavity-bias and configurational-bias algorithms in the context of GPU architecture. Specifically, for GCMC simulations of aqueous solution systems, the configurational-bias algorithm was extended by applying system partitioning in conjunction with a random interval extraction algorithm, thereby improving the efficiency in a highly parallel computing environment. The method is parallelized on the GPU using CUDA and OpenCL, allowing for the code to run on both Nvidia and AMD GPUs, respectively. Notably, the method is particularly well suited for GPU computing as the large number of threads allows for simultaneous sampling of a large number of configurations during insertion attempts without additional computational overhead. In addition, the partitioning scheme allows for simultaneous insertion attempts for large systems, offering considerable efficiency. Calculations on the BK Channel, a transporter, including a lipid bilayer with over 760,000 atoms, show a speed up of ~53-fold through the use of system partitioning. The improved algorithm is then combined with an enhanced μex oscillation protocol and shown to be of utility in the context of the site-identification by ligand competitive saturation (SILCS) co-solvent sampling approach as illustrated through application to the protein CDK2.
Collapse
Affiliation(s)
- Mingtian Zhao
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | | | | | | | - Anthony Hazel
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Alexander D MacKerell
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Eberhardt J, Forli S. WaterKit: Thermodynamic Profiling of Protein Hydration Sites. J Chem Theory Comput 2023; 19:2535-2556. [PMID: 37094087 PMCID: PMC10732097 DOI: 10.1021/acs.jctc.2c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Water desolvation is one of the key components of the free energy of binding of small molecules to their receptors. Thus, understanding the energetic balance of solvation and desolvation resulting from individual water molecules can be crucial when estimating ligand binding, especially when evaluating different molecules and poses as done in High-Throughput Virtual Screening (HTVS). Over the most recent decades, several methods were developed to tackle this problem, ranging from fast approximate methods (usually empirical functions using either discrete atom-atom pairwise interactions or continuum solvent models) to more computationally expensive and accurate ones, mostly based on Molecular Dynamics (MD) simulations, such as Grid Inhomogeneous Solvation Theory (GIST) or Double Decoupling. On one hand, MD-based methods are prohibitive to use in HTVS to estimate the role of waters on the fly for each ligand. On the other hand, fast and approximate methods show an unsatisfactory level of accuracy, with low agreement with results obtained with the more expensive methods. Here we introduce WaterKit, a new grid-based sampling method with explicit water molecules to calculate thermodynamic properties using the GIST method. Our results show that the discrete placement of water molecules is successful in reproducing the position of crystallographic waters with very high accuracy, as well as providing thermodynamic estimates with accuracy comparable to more expensive MD simulations. Unlike these methods, WaterKit can be used to analyze specific regions on the protein surface, (such as the binding site of a receptor), without having to hydrate and simulate the whole receptor structure. The results show the feasibility of a general and fast method to compute thermodynamic properties of water molecules, making it well-suited to be integrated in high-throughput pipelines such as molecular docking.
Collapse
Affiliation(s)
- Jerome Eberhardt
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
4
|
Shi J, Cho JH, Hwang W. Heterogeneous and Allosteric Role of Surface Hydration for Protein-Ligand Binding. J Chem Theory Comput 2023; 19:1875-1887. [PMID: 36820489 PMCID: PMC10848206 DOI: 10.1021/acs.jctc.2c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 02/24/2023]
Abstract
Atomistic-level understanding of surface hydration mediating protein-protein interactions and ligand binding has been a challenge due to the dynamic nature of water molecules near the surface. We develop a computational method to evaluate the solvation free energy based on the density map of the first hydration shell constructed from all-atom molecular dynamics simulation and use it to examine the binding of two intrinsically disordered ligands to their target protein domain. One ligand is from the human protein, and the other is from the 1918 Spanish flu virus. We find that the viral ligand incurs a 6.9 kcal/mol lower desolvation penalty upon binding to the target, which is consistent with its stronger binding affinity. The difference arises from the spatially fragmented and nonuniform water density profiles of the first hydration shell. In particular, residues that are distal from the ligand-binding site contribute to a varying extent to the desolvation penalty, among which the "entropy hotspot" residues contribute significantly. Thus, ligand binding alters hydration on remote sites in addition to affecting the binding interface. The nonlocal effect disappears when the conformational motion of the protein is suppressed. The present results elucidate the interplay between protein conformational dynamics and surface hydration. Our approach of measuring the solvation free energy based on the water density of the first hydration shell is tolerant of the conformational fluctuation of protein, and we expect it to be applicable to investigating a broad range of biomolecular interfaces.
Collapse
Affiliation(s)
- Jie Shi
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 777843, United States
| | - Jae-Hyun Cho
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas 77843, United States
| | - Wonmuk Hwang
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
- Department
of Physics and Astronomy, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Melling O, Samways ML, Ge Y, Mobley DL, Essex JW. Enhanced Grand Canonical Sampling of Occluded Water Sites Using Nonequilibrium Candidate Monte Carlo. J Chem Theory Comput 2023; 19:1050-1062. [PMID: 36692215 PMCID: PMC9933432 DOI: 10.1021/acs.jctc.2c00823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 01/25/2023]
Abstract
Water molecules play a key role in many biomolecular systems, particularly when bound at protein-ligand interfaces. However, molecular simulation studies on such systems are hampered by the relatively long time scales over which water exchange between a protein and solvent takes place. Grand canonical Monte Carlo (GCMC) is a simulation technique that avoids this issue by attempting the insertion and deletion of water molecules within a given structure. The approach is constrained by low acceptance probabilities for insertions in congested systems, however. To address this issue, here, we combine GCMC with nonequilibium candidate Monte Carlo (NCMC) to yield a method that we refer to as grand canonical nonequilibrium candidate Monte Carlo (GCNCMC), in which the water insertions and deletions are carried out in a gradual, nonequilibrium fashion. We validate this new approach by comparing GCNCMC and GCMC simulations of bulk water and three protein binding sites. We find that not only is the efficiency of the water sampling improved by GCNCMC but that it also results in increased sampling of ligand conformations in a protein binding site, revealing new water-mediated ligand-binding geometries that are not observed using alternative enhanced sampling techniques.
Collapse
Affiliation(s)
- Oliver
J. Melling
- School
of Chemistry, University of Southampton, SouthamptonSO17 1BJ, U.K.
| | - Marley L. Samways
- School
of Chemistry, University of Southampton, SouthamptonSO17 1BJ, U.K.
| | - Yunhui Ge
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California92697, United States
| | - David L. Mobley
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California92697, United States
- Department
of Chemistry, University of California, Irvine, California92697, United States
| | - Jonathan W. Essex
- School
of Chemistry, University of Southampton, SouthamptonSO17 1BJ, U.K.
| |
Collapse
|
6
|
Puch-Giner I, Molina A, Municoy M, Pérez C, Guallar V. Recent PELE Developments and Applications in Drug Discovery Campaigns. Int J Mol Sci 2022; 23:ijms232416090. [PMID: 36555731 PMCID: PMC9788188 DOI: 10.3390/ijms232416090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Computer simulation techniques are gaining a central role in molecular pharmacology. Due to several factors, including the significant improvements of traditional molecular modelling, the irruption of machine learning methods, the massive data generation, or the unlimited computational resources through cloud computing, the future of pharmacology seems to go hand in hand with in silico predictions. In this review, we summarize our recent efforts in such a direction, centered on the unconventional Monte Carlo PELE software and on its coupling with machine learning techniques. We also provide new data on combining two recent new techniques, aquaPELE capable of exhaustive water sampling and fragPELE, for fragment growing.
Collapse
Affiliation(s)
- Ignasi Puch-Giner
- Barcelona Supercomputing Center, Plaça d’Eusebi Güell, 1-3, 08034 Barcelona, Spain
| | - Alexis Molina
- Nostrum Biodiscovery S.L., Av. de Josep Tarradellas, 8-10, 3-2, 08029 Barcelona, Spain
| | - Martí Municoy
- Barcelona Supercomputing Center, Plaça d’Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Nostrum Biodiscovery S.L., Av. de Josep Tarradellas, 8-10, 3-2, 08029 Barcelona, Spain
| | - Carles Pérez
- Nostrum Biodiscovery S.L., Av. de Josep Tarradellas, 8-10, 3-2, 08029 Barcelona, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center, Plaça d’Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Nostrum Biodiscovery S.L., Av. de Josep Tarradellas, 8-10, 3-2, 08029 Barcelona, Spain
- Correspondence:
| |
Collapse
|