1
|
Volpert V, Xu B, Tchechmedjiev A, Harispe S, Aksenov A, Mesnildrey Q, Beuter A. Characterization of spatiotemporal dynamics in EEG data during picture naming with optical flow patterns. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:11429-11463. [PMID: 37322989 DOI: 10.3934/mbe.2023507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, we investigate the spatiotemporal dynamics of the neural oscillations by analyzing the electric potential that arises from neural activity. We identify two types of dynamics based on the frequency and phase of oscillations: standing waves or as out-of-phase and modulated waves, which represent a combination of standing and moving waves. To characterize these dynamics, we use optical flow patterns such as sources, sinks, spirals and saddles. We compare analytical and numerical solutions with real EEG data acquired during a picture-naming task. Analytical approximation of standing waves helps us to establish some properties of pattern location and number. Specifically, sources and sinks are mainly located in the same location, while saddles are positioned between them. The number of saddles correlates with the sum of all the other patterns. These properties are confirmed in both the simulated and real EEG data. In particular, source and sink clusters in the EEG data overlap with each other with median percentages around 60%, and hence have high spatial correlation, while source/sink clusters overlap with saddle clusters in less than 1%, and have different locations. Our statistical analysis showed that saddles account for about 45% of all patterns, while the remaining patterns are present in similar proportions.
Collapse
Affiliation(s)
- V Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France
| | - B Xu
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France
| | - A Tchechmedjiev
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France
| | - S Harispe
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France
| | | | | | - A Beuter
- CorStim SAS, Montpellier, France
| |
Collapse
|
2
|
Kitazawa Y, Sonoda M, Sakakura K, Mitsuhashi T, Firestone E, Ueda R, Kambara T, Iwaki H, Luat AF, Marupudi NI, Sood S, Asano E. Intra- and inter-hemispheric network dynamics supporting object recognition and speech production. Neuroimage 2023; 270:119954. [PMID: 36828156 PMCID: PMC10112006 DOI: 10.1016/j.neuroimage.2023.119954] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
We built normative brain atlases that animate millisecond-scale intra- and inter-hemispheric white matter-level connectivity dynamics supporting object recognition and speech production. We quantified electrocorticographic modulations during three naming tasks using event-related high-gamma activity from 1,114 nonepileptogenic intracranial electrodes (i.e., non-lesional areas unaffected by epileptiform discharges). Using this electrocorticography data, we visualized functional connectivity modulations defined as significant naming-related high-gamma modulations occurring simultaneously at two sites connected by direct white matter streamlines on diffusion-weighted imaging tractography. Immediately after stimulus onset, intra- and inter-hemispheric functional connectivity enhancements were confined mainly across modality-specific perceptual regions. During response preparation, left intra-hemispheric connectivity enhancements propagated in a posterior-to-anterior direction, involving the left precentral and prefrontal areas. After overt response onset, inter- and intra-hemispheric connectivity enhancements mainly encompassed precentral, postcentral, and superior-temporal (STG) gyri. We found task-specific connectivity enhancements during response preparation as follows. Picture naming enhanced activity along the left arcuate fasciculus between the inferior-temporal and precentral/posterior inferior-frontal (pIFG) gyri. Nonspeech environmental sound naming augmented functional connectivity via the left inferior longitudinal and fronto-occipital fasciculi between the medial-occipital and STG/pIFG. Auditory descriptive naming task enhanced usage of the left frontal U-fibers, involving the middle-frontal gyrus. Taken together, the commonly observed network enhancements include inter-hemispheric connectivity optimizing perceptual processing exerted in each hemisphere, left intra-hemispheric connectivity supporting semantic and lexical processing, and inter-hemispheric connectivity for symmetric oral movements during overt speech. Our atlases improve the currently available models of object recognition and speech production by adding neural dynamics via direct intra- and inter-hemispheric white matter tracts.
Collapse
Affiliation(s)
- Yu Kitazawa
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA; Department of Neurology and Stroke Medicine, Yokohama City University, Yokohama, 2360004, Japan
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA; Department of Neurosurgery, Yokohama City University, Yokohama, 2360004, Japan
| | - Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA; Department of Neurosurgery, University of Tsukuba, Tsukuba, 3058575, Japan
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA; Department of Neurosurgery, Juntendo University, Tokyo, 1138421, Japan
| | - Ethan Firestone
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA; Department of Physiology, Wayne State University, Detroit, 48201, USA
| | - Riyo Ueda
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA
| | - Toshimune Kambara
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA; Department of Psychology, Hiroshima University, Hiroshima, 7398524, Japan
| | - Hirotaka Iwaki
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA; Department of Psychiatry, Hachinohe City Hospital, Hachinohe, 0318555, Japan
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA; Department of Pediatrics, Central Michigan University, Mount Pleasant, 48858, USA
| | - Neena I Marupudi
- Department of Neurosurgery, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, 48201, USA.
| |
Collapse
|
3
|
Ono H, Sonoda M, Sakakura K, Kitazawa Y, Mitsuhashi T, Firestone E, Jeong JW, Luat AF, Marupudi NI, Sood S, Asano E. Dynamic cortical and tractography atlases of proactive and reactive alpha and high-gamma activities. Brain Commun 2023; 5:fcad111. [PMID: 37228850 PMCID: PMC10204271 DOI: 10.1093/braincomms/fcad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/15/2022] [Accepted: 04/03/2023] [Indexed: 05/27/2023] Open
Abstract
Alpha waves-posterior dominant rhythms at 8-12 Hz reactive to eye opening and closure-are among the most fundamental EEG findings in clinical practice and research since Hans Berger first documented them in the early 20th century. Yet, the exact network dynamics of alpha waves in regard to eye movements remains unknown. High-gamma activity at 70-110 Hz is also reactive to eye movements and a summary measure of local cortical activation supporting sensorimotor or cognitive function. We aimed to build the first-ever brain atlases directly visualizing the network dynamics of eye movement-related alpha and high-gamma modulations, at cortical and white matter levels. We studied 28 patients (age: 5-20 years) who underwent intracranial EEG and electro-oculography recordings. We measured alpha and high-gamma modulations at 2167 electrode sites outside the seizure onset zone, interictal spike-generating areas and MRI-visible structural lesions. Dynamic tractography animated white matter streamlines modulated significantly and simultaneously beyond chance, on a millisecond scale. Before eye-closure onset, significant alpha augmentation occurred at the occipital and frontal cortices. After eye-closure onset, alpha-based functional connectivity was strengthened, while high gamma-based connectivity was weakened extensively in both intra-hemispheric and inter-hemispheric pathways involving the central visual areas. The inferior fronto-occipital fasciculus supported the strengthened alpha co-augmentation-based functional connectivity between occipital and frontal lobe regions, whereas the posterior corpus callosum supported the inter-hemispheric functional connectivity between the occipital lobes. After eye-opening offset, significant high-gamma augmentation and alpha attenuation occurred at occipital, fusiform and inferior parietal cortices. High gamma co-augmentation-based functional connectivity was strengthened, whereas alpha-based connectivity was weakened in the posterior inter-hemispheric and intra-hemispheric white matter pathways involving central and peripheral visual areas. Our results do not support the notion that eye closure-related alpha augmentation uniformly reflects feedforward or feedback rhythms propagating from lower to higher order visual cortex, or vice versa. Rather, proactive and reactive alpha waves involve extensive, distinct white matter networks that include the frontal lobe cortices, along with low- and high-order visual areas. High-gamma co-attenuation coupled to alpha co-augmentation in shared brain circuitry after eye closure supports the notion of an idling role for alpha waves during eye closure. These normative dynamic tractography atlases may improve understanding of the significance of EEG alpha waves in assessing the functional integrity of brain networks in clinical practice; they also may help elucidate the effects of eye movements on task-related brain network measures observed in cognitive neuroscience research.
Collapse
Affiliation(s)
- Hiroya Ono
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Pediatric Neurology, National Center of Neurology and Psychiatry, Joint Graduate School of Tohoku University, Tokyo 1878551, Japan
- Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Masaki Sonoda
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama 2360004, Japan
| | - Kazuki Sakakura
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, University of Tsukuba, Tsukuba 3058575, Japan
| | - Yu Kitazawa
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology and Stroke Medicine, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Juntendo University, School of Medicine, Tokyo 1138421, Japan
| | - Ethan Firestone
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Aimee F Luat
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Pediatrics, Central Michigan University, Mount Pleasant, MI 48858, USA
| | - Neena I Marupudi
- Department of Neurosurgery, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
4
|
Ross A, Paulk AC, Cash SS, Widge AS, Basu I. Neural mass model-based study of frontal-temporal theta oscillations in human subjects during the performance of a cognitive control task. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2937-2940. [PMID: 36086466 PMCID: PMC9974231 DOI: 10.1109/embc48229.2022.9871719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cognitive control, the ability to rapidly shift one's attention and behavioral strategy in response to environmental changes, is often compromised across psychiatric disorders. One of the well-validated behavioral paradigms for tapping into the cognitive control circuits is a cognitive interference task, where subjects must suppress a natural response to follow a less intuitive rule. Slower response times on these tasks indicate difficulty exerting control to overcome response conflict. Conflict evokes robust electrophysiological signatures, such as theta (4-8 Hz) oscillations in the prefrontal cortex (PFC). However, the underlying neural mechanisms of conflict-evoked theta oscillations in the PFC are not clear. The objective of this work is to use a neural mass model (NMM) to find feasible cortical networks generating theta oscillations during conflict processing in human subjects. We used intracranial EEG (iEEG) recorded from dorsolateral PFC (dIPFC) and lateral temporal lobe (LTL) of human subjects with intractable epilepsy undergoing invasive monitoring, while they performed a multi-source interference task (MSIT). We used a dynamic causal modeling (DCM) framework to simulate dIPFC-LTL theta using a Jansen-Rit NMM. We found significant evidence for an LTL input into the dlPFC during the initial 500 ms of conflict processing compared to a bidirectional connection between the dlPFC and LTL. We conclude that a neural mass modeling framework can be used to elucidate candidate mechanisms of neural oscillations underlying conflict resolution in human subjects. Clinical Relevance- This can be used to find feasible target mechanisms for designing therapy in patients with compromised cognitive control. This framework can also be expanded to serve as an in-silico test bed for designing and testing neuromodulatory interventions such as electrical stimulation for improving cognitive control in mood/anxiety disorders.
Collapse
Affiliation(s)
| | | | - Sydney S Cash
- Massachusetts General Hospital, Boston, Massachusetts
| | | | - Ishita Basu
- University of Cincinnati, Cincinnati, Ohio 45267
| |
Collapse
|
5
|
Borodkin K, Livny A, Kushnir T, Tsarfaty G, Maliniak O, Faust M. Linking L2 proficiency and patterns of functional connectivity during L1 word retrieval. BRAIN AND LANGUAGE 2021; 216:104931. [PMID: 33677174 DOI: 10.1016/j.bandl.2021.104931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/29/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Second language (L2) learners differ greatly in language proficiency, which is partially explained by variability in native language (L1) skills. The present fMRI study explored the neural underpinnings of the L1-L2 link. Twenty L2 learners completed a tip-of-the-tongue (TOT) task that required retrieving words in L1. Low-proficiency L2 learners showed greater functional connectivity for correct and TOT responses between the left inferior frontal gyrus and right-sided homologues of the temporoparietal regions that support phonological processing (e.g., supramarginal gyrus), possibly reflecting difficulty with phonological retrieval. High-proficiency L2 learners showed greater connectivity for erroneous responses (TOT in particular) between the left inferior frontal gyrus and regions of left medial temporal lobe (e.g., hippocampus), associated with implicit learning processes. The difference between low- and high-proficiency L2 learners in functional connectivity, which is evident even during L1 processing, may affect L2 learning processes and outcomes.
Collapse
Affiliation(s)
- Katy Borodkin
- Department of Communication Disorders, Sackler Faculty of Medicine, Tel Aviv University, Israel.
| | - Abigail Livny
- Department of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Tammar Kushnir
- Department of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Galia Tsarfaty
- Department of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Omer Maliniak
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
| | - Miriam Faust
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel; Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
6
|
Beuter A, Balossier A, Vassal F, Hemm S, Volpert V. Cortical stimulation in aphasia following ischemic stroke: toward model-guided electrical neuromodulation. BIOLOGICAL CYBERNETICS 2020; 114:5-21. [PMID: 32020368 DOI: 10.1007/s00422-020-00818-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The aim of this paper is to integrate different bodies of research including brain traveling waves, brain neuromodulation, neural field modeling and post-stroke language disorders in order to explore the opportunity of implementing model-guided, cortical neuromodulation for the treatment of post-stroke aphasia. Worldwide according to WHO, strokes are the second leading cause of death and the third leading cause of disability. In ischemic stroke, there is not enough blood supply to provide enough oxygen and nutrients to parts of the brain, while in hemorrhagic stroke, there is bleeding within the enclosed cranial cavity. The present paper focuses on ischemic stroke. We first review accumulating observations of traveling waves occurring spontaneously or triggered by external stimuli in healthy subjects as well as in patients with brain disorders. We examine the putative functions of these waves and focus on post-stroke aphasia observed when brain language networks become fragmented and/or partly silent, thus perturbing the progression of traveling waves across perilesional areas. Secondly, we focus on a simplified model based on the current literature in the field and describe cortical traveling wave dynamics and their modulation. This model uses a biophysically realistic integro-differential equation describing spatially distributed and synaptically coupled neural networks producing traveling wave solutions. The model is used to calculate wave parameters (speed, amplitude and/or frequency) and to guide the reconstruction of the perturbed wave. A stimulation term is included in the model to restore wave propagation to a reasonably good level. Thirdly, we examine various issues related to the implementation model-guided neuromodulation in the treatment of post-stroke aphasia given that closed-loop invasive brain stimulation studies have recently produced encouraging results. Finally, we suggest that modulating traveling waves by acting selectively and dynamically across space and time to facilitate wave propagation is a promising therapeutic strategy especially at a time when a new generation of closed-loop cortical stimulation systems is about to arrive on the market.
Collapse
Affiliation(s)
- Anne Beuter
- Bordeaux INP, University of Bordeaux, Bordeaux, France.
| | - Anne Balossier
- Service de neurochirurgie fonctionnelle et stéréotaxique, AP-HM La Timone, Aix-Marseille University, Marseille, France
| | - François Vassal
- INSERM U1028 Neuropain, UMR 5292, Centre de Recherche en Neurosciences, Universités Lyon 1 et Saint-Etienne, Saint-Étienne, France
- Service de Neurochirurgie, Hôpital Nord, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Étienne, France
| | - Simone Hemm
- School of Life Sciences, Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, 4132, Muttenz, Switzerland
| | - Vitaly Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622, Villeurbanne, France
- INRIA Team Dracula, INRIA Lyon La Doua, 69603, Villeurbanne, France
- People's Friendship University of Russia (RUDN University), Miklukho-Maklaya St, Moscow, Russian Federation, 117198
| |
Collapse
|
7
|
Alemán-Gómez Y, Poch C, Toledano R, Jiménez-Huete A, García-Morales I, Gil-Nagel A, Campo P. Morphometric correlates of anomia in patients with small left temporopolar lesions. J Neuropsychol 2019; 14:260-282. [PMID: 31059211 DOI: 10.1111/jnp.12184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 03/06/2019] [Indexed: 10/26/2022]
Abstract
Visual object naming is a complex cognitive process that engages an interconnected network of cortical regions moving from occipitotemporal to anterior-inferior temporal cortices, and extending into the inferior frontal cortex. Naming can fail for diverse reasons, and different stages of the naming multi-step process appear to be reliant upon the integrity of different neuroanatomical locations. While the neural correlates of semantic errors have been extensively studied, the neural basis of omission errors remains relatively unspecified. Although a strong line of evidence supports an association between anterior temporal lobe damage and semantic errors, there are some studies suggesting that the anterior temporal lobe could be also associated with omissions. However, support for this hypothesis comes from studies with patients in whom damage affected extensive brain regions, sometimes bilaterally. Here, we availed of a group of 12 patients with epilepsy associated with a small lesion at the tip of the left temporal pole. Using an unbiased surface-based morphometry methodology, we correlated two morphological features with errors observed during visual naming. Analyses revealed a correlation between omission errors and reduced local gyrification index in three cortical clusters: one in the left anteromedial temporal lobe region (AMTL) and two in the left anterior cingulate cortex (ACC). Our findings support the view that regions in ACC and AMTL are critical structures within a network engaged in word selection from semantics.
Collapse
Affiliation(s)
- Yasser Alemán-Gómez
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Switzerland.,Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Switzerland.,Medical Image Analysis Laboratory (MIAL), Centre d'Imagerie BioMédicale (CIBM), Lausanne, Switzerland
| | - Claudia Poch
- Department of Basic Psychology, University Complutense of Madrid, Spain.,Instituto Pluridisciplinar, University Complutense of Madrid, Spain.,Facultad de Lenguas y Educación, Universidad Nebrija, Madrid, Spain
| | - Rafael Toledano
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain.,Epilepsy Unit, Neurology Department, University Hospital of Ramón y Cajal, Madrid, Spain
| | - Adolfo Jiménez-Huete
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| | - Irene García-Morales
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain.,Epilepsy Unit, Neurology Department, University Hospital of San Carlos, Madrid, Spain
| | - Antonio Gil-Nagel
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| | - Pablo Campo
- Department of Basic Psychology, Autonoma University of Madrid, Spain
| |
Collapse
|
8
|
Sarma SV. Emerging techniques in statistical analysis of neural data. J Comput Neurosci 2019; 46:1. [PMID: 30737595 DOI: 10.1007/s10827-019-00709-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sridevi V Sarma
- Biomedical Engineering, Institute for Computational Medicine, Neuromedical Control Systems Group, The Johns Hopkins University, Rm. 315 Hackerman Hall, 3400 N. Charles St., Baltimore, MD, 21218, USA.
| |
Collapse
|
9
|
Piai V, Zheng X. Speaking waves: Neuronal oscillations in language production. PSYCHOLOGY OF LEARNING AND MOTIVATION 2019. [DOI: 10.1016/bs.plm.2019.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|