1
|
Aksenov DP, Gascoigne DA, Duan J, Drobyshevsky A. Function and development of interneurons involved in brain tissue oxygen regulation. Front Mol Neurosci 2022; 15:1069496. [PMID: 36504684 PMCID: PMC9729339 DOI: 10.3389/fnmol.2022.1069496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
The regulation of oxygen in brain tissue is one of the most important fundamental questions in neuroscience and medicine. The brain is a metabolically demanding organ, and its health directly depends on maintaining oxygen concentrations within a relatively narrow range that is both sufficiently high to prevent hypoxia, and low enough to restrict the overproduction of oxygen species. Neurovascular interactions, which are responsible for oxygen delivery, consist of neuronal and glial components. GABAergic interneurons play a particularly important role in neurovascular interactions. The involvement of interneurons extends beyond the perspective of inhibition, which prevents excessive neuronal activity and oxygen consumption, and includes direct modulation of the microvasculature depending upon their sub-type. Namely, nitric oxide synthase-expressing (NOS), vasoactive intestinal peptide-expressing (VIP), and somatostatin-expressing (SST) interneurons have shown modulatory effects on microvessels. VIP interneurons are known to elicit vasodilation, SST interneurons typically cause vasoconstriction, and NOS interneurons have to propensity to induce both effects. Given the importance and heterogeneity of interneurons in regulating local brain tissue oxygen concentrations, we review their differing functions and developmental trajectories. Importantly, VIP and SST interneurons display key developmental milestones in adolescence, while NOS interneurons mature much earlier. The implications of these findings point to different periods of critical development of the interneuron-mediated oxygen regulatory systems. Such that interference with normal maturation processes early in development may effect NOS interneuron neurovascular interactions to a greater degree, while insults later in development may be more targeted toward VIP- and SST-mediated mechanisms of oxygen regulation.
Collapse
Affiliation(s)
- Daniil P. Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States,Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL, United States,Pritzker School of Medicine, University of Chicago, Chicago, IL, United States,*Correspondence: Daniil P. Aksenov,
| | - David A. Gascoigne
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, United States,Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, United States
| | - Alexander Drobyshevsky
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States,Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, United States
| |
Collapse
|
2
|
Aksenov DP, Doubovikov ED, Serdyukova NA, Gascoigne DA, Linsenmeier RA, Drobyshevsky A. Brain tissue oxygen dynamics while mimicking the functional deficiency of interneurons. Front Cell Neurosci 2022; 16:983298. [PMID: 36339824 PMCID: PMC9630360 DOI: 10.3389/fncel.2022.983298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
The dynamic interaction between excitatory and inhibitory activity in the brain is known as excitatory-inhibitory balance (EIB). A significant shift in EIB toward excitation has been observed in numerous pathological states and diseases, such as autism or epilepsy, where interneurons may be dysfunctional. The consequences of this on neurovascular interactions remains to be elucidated. Specifically, it is not known if there is an elevated metabolic consumption of oxygen due to increased excitatory activity. To investigate this, we administered microinjections of picrotoxin, a gamma aminobutyric acid (GABA) antagonist, to the rabbit cortex in the awake state to mimic the functional deficiency of GABAergic interneurons. This caused an observable shift in EIB toward excitation without the induction of seizures. We used chronically implanted electrodes to measure both neuronal activity and brain tissue oxygen concentrations (PO2) simultaneously and in the same location. Using a high-frequency recording rate for PO2, we were able to detect two important phenomena, (1) the shift in EIB led to a change in the power spectra of PO2 fluctuations, such that higher frequencies (8-15 cycles per minute) were suppressed and (2) there were brief periods (dips with a duration of less than 100 ms associated with neuronal bursts) when PO2 dropped below 10 mmHg, which we defined as the threshold for hypoxia. The dips were followed by an overshoot, which indicates either a rapid vascular response or decrease in oxygen consumption. Our results point to the essential role of interneurons in brain tissue oxygen regulation in the resting state.
Collapse
Affiliation(s)
- Daniil P. Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States,Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL, United States,Pritzker School of Medicine, University of Chicago, Chicago, IL, United States,*Correspondence: Daniil P. Aksenov,
| | - Evan D. Doubovikov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Natalya A. Serdyukova
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States,Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, United States
| | - David A. Gascoigne
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Robert A. Linsenmeier
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Alexander Drobyshevsky
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States,Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, United States
| |
Collapse
|
3
|
Neonatal Anesthesia and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11040787. [PMID: 35453473 PMCID: PMC9026345 DOI: 10.3390/antiox11040787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Neonatal anesthesia, while often essential for surgeries or imaging procedures, is accompanied by significant risks to redox balance in the brain due to the relatively weak antioxidant system in children. Oxidative stress is characterized by concentrations of reactive oxygen species (ROS) that are elevated beyond what can be accommodated by the antioxidant defense system. In neonatal anesthesia, this has been proposed to be a contributing factor to some of the negative consequences (e.g., learning deficits and behavioral abnormalities) that are associated with early anesthetic exposure. In order to assess the relationship between neonatal anesthesia and oxidative stress, we first review the mechanisms of action of common anesthetic agents, the key pathways that produce the majority of ROS, and the main antioxidants. We then explore the possible immediate, short-term, and long-term pathways of neonatal-anesthesia-induced oxidative stress. We review a large body of literature describing oxidative stress to be evident during and immediately following neonatal anesthesia. Moreover, our review suggests that the short-term pathway has a temporally limited effect on oxidative stress, while the long-term pathway can manifest years later due to the altered development of neurons and neurovascular interactions.
Collapse
|
4
|
Chen C, Zhu Y, Chen Y, Wang Z, Zhao L. Effects of cerebral artery thrombectomy on efficacy, safety, cognitive function and peripheral blood Aβ, IL-6 and TNF-α levels in patients with acute cerebral infarction. Am J Transl Res 2021; 13:14005-14014. [PMID: 35035742 PMCID: PMC8748161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Acute cerebral infarction (ACI) can lead to death or disability, posing a serious threat to human health. This study aimed to investigate the effects of cerebral artery thrombectomy on the efficacy, safety, cognitive function and peripheral blood amyloid-β (Aβ), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels in patients with ACI. METHODS The clinical data of 169 patients with ACI admitted to our hospital from April 2019 to September 2020 were analyzed retrospectively. Among them, 100 patients were treated with cerebral artery thrombectomy and assigned to the research group, and the other 69 patients were intervened by conventional treatment and assigned to the control group. The clinical effects in the two groups were observed and compared. The cognitive function was evaluated by the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment Scale (MoCA), the neurological dysfunction was assessed by the National Institutes of Health Stroke Scale (NIHSS), and the prognosis was determined by the Modified Rankin Scale (mRS). Peripheral blood Aβ1-40, Aβ1-42, IL-6 and TNF-α levels were determined using the enzyme-linked immunosorbent assay (ELISA). The incidence of adverse reactions and complications was statistically analyzed. RESULTS The overall response rate (ORR) was notably higher in the research group compared with the control group. Aβ1-40, Aβ1-42, IL-6 and TNF-α levels showed no significant difference between the two groups before treatment (P>0.05). After treatment, serum Aβ1-40 level was lower and Aβ1-42 was higher in the research group compared with the control group at each time point. Serum IL-6 level was markedly higher within 24 h while it was dramatically lower 24 h after treatment in the research group as compared with the control group. At 24 h, 7 d and 14 d after treatment, serum TNF-α level in the research group was lower than that in the control group (P<0.05). The MMSE and MoCA scores showed no significant differences between the two groups before treatment; however, the two scores in the research group were statistically higher than those in the control group after treatment. In addition, lower NIHSS and mRS scores were determined in the research group compared with the control group after treatment. Moreover, except for the statistically significant difference in the number of cases with cognitive dysfunction (P<0.05), there was no significant difference in the incidence of other adverse reactions between the research group and the control group (P>0.05). CONCLUSIONS Cerebral artery thrombectomy is effective in the treatment of ACI, which can improve the cognitive function of patients and alleviate the high Aβ accumulation and inflammation in the central nervous system, with a high safety profile.
Collapse
Affiliation(s)
- Chun Chen
- Department of Neurological Medicine, Siyang Hospital of Traditional Chinese MedicineSiyang 223700, Jiangsu Province, China
- Department of Neurology, Xuzhou Medical University Affiliated Hospital of Huai’anHuai’an 223002, Jiangsu Province, China
| | - Yiyi Zhu
- Department of Neurology, Xuzhou Medical University Affiliated Hospital of Huai’anHuai’an 223002, Jiangsu Province, China
| | - Yan Chen
- Department of Neurological Medicine, Siyang Hospital of Traditional Chinese MedicineSiyang 223700, Jiangsu Province, China
| | - Zengjun Wang
- Department of Neurology, Xuzhou Medical University Affiliated Hospital of Huai’anHuai’an 223002, Jiangsu Province, China
| | - Liandong Zhao
- Department of Neurology, Xuzhou Medical University Affiliated Hospital of Huai’anHuai’an 223002, Jiangsu Province, China
| |
Collapse
|
5
|
Early Development of the GABAergic System and the Associated Risks of Neonatal Anesthesia. Int J Mol Sci 2021; 22:ijms222312951. [PMID: 34884752 PMCID: PMC8657958 DOI: 10.3390/ijms222312951] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
Human and animal studies have elucidated the apparent neurodevelopmental effects resulting from neonatal anesthesia. Observations of learning and behavioral deficits in children, who were exposed to anesthesia early in development, have instigated a flurry of studies that have predominantly utilized animal models to further interrogate the mechanisms of neonatal anesthesia-induced neurotoxicity. Specifically, while neonatal anesthesia has demonstrated its propensity to affect multiple cell types in the brain, it has shown to have a particularly detrimental effect on the gamma aminobutyric acid (GABA)ergic system, which contributes to the observed learning and behavioral deficits. The damage to GABAergic neurons, resulting from neonatal anesthesia, seems to involve structure-specific changes in excitatory-inhibitory balance and neurovascular coupling, which manifest following a significant interval after neonatal anesthesia exposure. Thus, to better understand how neonatal anesthesia affects the GABAergic system, we first review the early development of the GABAergic system in various structures that have been the focus of neonatal anesthesia research. This is followed by an explanation that, due to the prolonged developmental curve of the GABAergic system, the entirety of the negative effects of neonatal anesthesia on learning and behavior in children are not immediately evident, but instead take a substantial amount of time (years) to fully develop. In order to address these concerns going forward, we subsequently offer a variety of in vivo methods which can be used to record these delayed effects.
Collapse
|
6
|
Li C, Shah KA, Powell K, Wu YC, Chaung W, Sonti AN, White TG, Doobay M, Yang WL, Wang P, Becker LB, Narayan RK. CBF oscillations induced by trigeminal nerve stimulation protect the pericontusional penumbra in traumatic brain injury complicated by hemorrhagic shock. Sci Rep 2021; 11:19652. [PMID: 34608241 PMCID: PMC8490389 DOI: 10.1038/s41598-021-99234-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Traumatic peri-contusional penumbra represents crucial targets for therapeutic interventions after traumatic brain injury (TBI). Current resuscitative approaches may not adequately alleviate impaired cerebral microcirculation and, hence, compromise oxygen delivery to peri-contusional areas. Low-frequency oscillations in cerebral blood flow (CBF) may improve cerebral oxygenation in the setting of oxygen deprivation. However, no method has been reported to induce controllable oscillations in CBF and it hasn't been applied as a therapeutic strategy. Electrical stimulation of the trigeminal nerve (TNS) plays a pivotal role in modulating cerebrovascular tone and cerebral perfusion. We hypothesized that TNS can modulate CBF at the targeted frequency band via the trigemino-cerebrovascular network, and TNS-induced CBF oscillations would improve cerebral oxygenation in peri-contusional areas. In a rat model of TBI complicated by hemorrhagic shock, TNS-induced CBF oscillations conferred significant preservation of peri-contusional tissues leading to reduced lesion volume, attenuated hypoxic injury and neuroinflammation, increased eNOS expression, improved neurological recovery and better 10-day survival rate, despite not significantly increasing CBF as compared with those in immediate and delayed resuscitation animals. Our findings indicate that low-frequency CBF oscillations enhance cerebral oxygenation in peri-contusional areas, and play a more significant protective role than improvements in non-oscillatory cerebral perfusion or volume expansion alone.
Collapse
Affiliation(s)
- Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA. .,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Kevin A Shah
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Yi-Chen Wu
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Wayne Chaung
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Anup N Sonti
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Timothy G White
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Mohini Doobay
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Lance B Becker
- Department of Emergency Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Raj K Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
7
|
Aksenov DP. Normal Development of Local Neurovascular Interactions and the Diagnostic Value of Resting State Functional MRI in Neurovascular Deficiency Based on the Example of Neonatal Anesthesia Exposure. Front Neurol 2021; 12:664706. [PMID: 33995262 PMCID: PMC8116565 DOI: 10.3389/fneur.2021.664706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/08/2021] [Indexed: 01/25/2023] Open
Affiliation(s)
- Daniil P Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States.,Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL, United States
| |
Collapse
|
8
|
Drobyshevsky A, Miller MJ, Li L, Dixon CJ, Venkatasubramanian PN, Wyrwicz AM, Aksenov DP. Behavior and Regional Cortical BOLD Signal Fluctuations Are Altered in Adult Rabbits After Neonatal Volatile Anesthetic Exposure. Front Neurosci 2020; 14:571486. [PMID: 33192256 PMCID: PMC7645165 DOI: 10.3389/fnins.2020.571486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022] Open
Abstract
Neonatal and infant exposure to volatile anesthetics has been associated with long-term learning, memory, and behavioral deficits. Although early anesthesia exposure has been linked to a number of underlying structural abnormalities, functional changes associated with these impairments remain poorly understood. To investigate the relationship between functional alteration in neuronal circuits and learning deficiency, resting state functional MRI (rsfMRI) connectivity was examined in adolescent rabbits exposed to general anesthesia as neonates (1 MAC isoflurane for 2 h on postnatal days P8, P11, and P14) and unanesthetized controls before and after training with a trace eyeblink classical conditioning (ECC) paradigm. Long-range connectivity was measured between several key regions of interest (ROIs), including primary and secondary somatosensory cortices, thalamus, hippocampus, and cingulate. In addition, metrics of regional BOLD fluctuation amplitudes and coherence, amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) were calculated. Our results showed that the trace ECC learning rate was significantly lower in the anesthesia-exposed group. No anesthesia-related changes in long-range connectivity, fALFF, or ReHo were found between any ROIs. However, ALFF was significantly higher in anesthesia-exposed rabbits in the primary and secondary somatosensory cortices, and ALFF in those areas was a significant predictor of the learning performance for trace ECC. The absence of anesthesia-related changes in long-range thalamocortical connectivity indicates that functional thalamocortical input is not affected. Higher ALFF in the somatosensory cortex may indicate the developmental disruption of cortical neuronal circuits after neonatal anesthesia exposure, including excessive neuronal synchronization that may underlie the observed cognitive deficits.
Collapse
Affiliation(s)
- Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, United States
| | - Mike J Miller
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Limin Li
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Conor J Dixon
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| | | | - Alice M Wyrwicz
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Daniil P Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| |
Collapse
|