1
|
Xie Q, Ma Y, Ren Z, Gu T, Jiang Z. Circular RNA: A new expectation for cardiovascular diseases. J Cell Biochem 2024; 125:e30512. [PMID: 38098251 DOI: 10.1002/jcb.30512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024]
Abstract
Circular RNA (circRNA) is a class of RNA with the 5' and 3' ends connected covalently to form a closed loop structure and characterized by high stability, conserved sequences and tissue specificity, which is caused by special reverse splicing methods. Currently, it has become a hot spot for research. With the discovery of its powerful regulatory functions and roles, the molecular mechanisms and future value of circRNA in participating in and regulating biological and pathological processes are becoming increasingly apparent. Among them is the increasing prevalence of cardiovascular diseases (CVDs). Many studies have elucidated that circRNA plays a crucial role in the development and progression of CVDs. Therefore, circRNA shows its advantages and brilliant expectations in the field of CVDs. In this review, we describe the biogenesis, bioinformatics detection and function of circRNA and discuss the role of circRNA and its effects on CVDs, including atherosclerosis, myocardial infarction, cardiac hypertrophy and heart failure, myocardial fibrosis, cardiac senescence, pulmonary hypertension, and diabetic cardiomyopathy by different mechanisms. That shows circRNA advantages and brilliant expectations in the field of CVDs.
Collapse
Affiliation(s)
- Qiao Xie
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Yun Ma
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tianhe Gu
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Baulina NM, Kiselev IS, Chumakova OS, Favorova OO. Circular RNAs: Biogenesis, Functions, and Role in Myocardial Hypertrophy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S1-S13. [PMID: 38621741 DOI: 10.1134/s0006297924140013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 04/17/2024]
Abstract
Circular RNAs (circRNAs) are a large class of endogenous single-stranded covalently closed RNA molecules. High-throughput RNA sequencing and bioinformatic algorithms have identified thousands of eukaryotic circRNAs characterized by high stability and tissue-specific expression pattern. Recent studies have shown that circRNAs play an important role in the regulation of physiological processes in the norm and in various diseases, including cardiovascular disorders. The review presents current concepts of circRNA biogenesis, structural features, and biological functions, describes the methods of circRNA analysis, and summarizes the results of studies on the role of circRNAs in the pathogenesis of hypertrophic cardiomyopathy, the most common inherited heart disease.
Collapse
Affiliation(s)
- Natalia M Baulina
- Chazov National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Ivan S Kiselev
- Chazov National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Olga S Chumakova
- Chazov National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Olga O Favorova
- Chazov National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
3
|
Hoque P, Romero B, Akins RE, Batish M. Exploring the Multifaceted Biologically Relevant Roles of circRNAs: From Regulation, Translation to Biomarkers. Cells 2023; 12:2813. [PMID: 38132133 PMCID: PMC10741722 DOI: 10.3390/cells12242813] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
CircRNAs are a category of regulatory RNAs that have garnered significant attention in the field of regulatory RNA research due to their structural stability and tissue-specific expression. Their circular configuration, formed via back-splicing, results in a covalently closed structure that exhibits greater resistance to exonucleases compared to linear RNAs. The distinctive regulation of circRNAs is closely associated with several physiological processes, as well as the advancement of pathophysiological processes in several human diseases. Despite a good understanding of the biogenesis of circular RNA, details of their biological roles are still being explored. With the steady rise in the number of investigations being carried out regarding the involvement of circRNAs in various regulatory pathways, understanding the biological and clinical relevance of circRNA-mediated regulation has become challenging. Given the vast landscape of circRNA research in the development of the heart and vasculature, we evaluated cardiovascular system research as a model to critically review the state-of-the-art understanding of the biologically relevant functions of circRNAs. We conclude the review with a discussion of the limitations of current functional studies and provide potential solutions by which these limitations can be addressed to identify and validate the meaningful and impactful functions of circRNAs in different physiological processes and diseases.
Collapse
Affiliation(s)
- Parsa Hoque
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Brigette Romero
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Robert E Akins
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA;
| | - Mona Batish
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA;
| |
Collapse
|
4
|
Deng M, Wang Z, Luo J, Cao H, Li Y, Chen L, Liu G. CircZNF367 promotes osteoclast differentiation and osteoporosis by interacting with FUS to maintain CRY2 mRNA stability. J Orthop Surg Res 2023; 18:492. [PMID: 37434265 DOI: 10.1186/s13018-023-03955-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Osteoporosis, characterized by reduced bone mass and deterioration of bone quality, is a significant health concern for postmenopausal women. Considering that the specific role of circRNAs in osteoporosis and osteoclast differentiation remains poorly understood, this study aims to shed light on their involvement in these processes to enhance our understanding and potentially contribute to improved treatment strategies for osteoporosis. METHODS An osteoporotic model was constructed in vivo in ovariectomized mouse. In vitro, we induced osteoclast formation in bone marrow-derived macrophages (BMDMs) using M-CSF + RANKL. To assess osteoporosis in mice, we conducted HE staining. We used MTT and TRAP staining to measure cell viability and osteoclast formation, respectively, and also evaluated their mRNA and protein expression levels. In addition, RNA pull-down, RIP and luciferase reporter assays were performed to investigate interactions, and ChIP assay was used to examine the impact of circZNF367 knockdown on the binding between FUS and CRY2. RESULTS We observed increased expression of CircZNF367, FUS and CRY2 in osteoporotic mice and M-CSF + RANKL-induced BMDMs. Functionally, knocking down circZNF367 inhibited osteoporosis in vivo. Furthermore, interference with circZNF367 suppressed osteoclast proliferation and the expression of TRAP, NFATc1, and c-FOS. Mechanistically, circZNF367 interacted with FUS to maintain CRY2 mRNA stability. Additionally, knocking down CRY2 rescued M-CSF + RANKL-induced osteoclast differentiation in BMDMs promoted by circZNF367 and FUS. CONCLUSION This study reveals that the circZNF367/FUS axis may accelerate osteoclasts differentiation by upregulating CRY2 in osteoporosis and suggests that targeting circZNF367 may have potential therapeutic effects on osteoporosis.
Collapse
Affiliation(s)
- Mingsi Deng
- Department of Stomatology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China
- Department of Orthodontics, Changsha Stomatology Hospital, Changsha, 410005, Hunan, People's Republic of China
| | - Zhengguang Wang
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Jia Luo
- Changsha Blood Center, Changsha, 410001, Hunan, People's Republic of China
| | - Heng Cao
- The Department of Wound Joint Surgery, Affiliated Hospital of Yiyang Medical College, Yiyang, 413000, Hunan, People's Republic of China
| | - Yong Li
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Liangjian Chen
- Department of Stomatology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Gengyan Liu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|