1
|
Sahin I, Ayazi M, Mucchiani C, Dube J, Karydis K, Kokkoni E. Evaluation of fabric-based pneumatic actuator enclosure and anchoring configurations in a pediatric soft robotic exosuit. Front Robot AI 2024; 11:1302862. [PMID: 39463802 PMCID: PMC11502928 DOI: 10.3389/frobt.2024.1302862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 08/26/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Soft robotics play an increasing role in the development of exosuits that assist, and in some cases enhance human motion. While most existing efforts have focused on the adult population, devices targeting infants are on the rise. This work investigated how different configurations pertaining to fabric-based pneumatic shoulder and elbow actuator embedding on the passive substrate of an exosuit for pediatric upper extremity motion assistance can affect key performance metrics. Methods The configurations varied based on actuator anchoring points onto the substrate and the type of fabric used to fabricate the enclosures housing the actuators. Shoulder adduction/abduction and elbow flexion/extension were treated separately. Two different variants (for each case) of similar but distinct actuators were considered. The employed metrics were grouped into two categories; reachable workspace, which includes joint range of motion and end-effector path length; and motion smoothness, which includes end-effector path straightness index and jerk. The former category aimed to capture first-order terms (i.e., rotations and displacements) that capture overall gross motion, while the latter category aimed to shed light on differential terms that correlate with the quality of the attained motion. Extensive experimentation was conducted for each individual considered configuration, and statistical analyses were used to establish distinctive strengths, weaknesses, and trade-offs among those configurations. Results The main findings from experiments confirm that the performance of the actuators can be significantly impacted by variations in the anchoring and fabric properties of the enclosures while establishing interesting trade-offs. Specifically, the most appropriate anchoring point was not necessarily the same for all actuator variants. In addition, highly stretchable fabrics not only maintained but even enhanced actuator capabilities, in comparison to the less stretchable materials which turned out to hinder actuator performance. Conclusion The established trade-offs can serve as guiding principles for other researchers and practitioners developing upper extremity exosuits.
Collapse
Affiliation(s)
- Ipsita Sahin
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Mehrnoosh Ayazi
- Department of Electrical and Computer Engineering, University of California, Riverside, Riverside, CA, United States
| | - Caio Mucchiani
- Department of Electrical and Computer Engineering, University of California, Riverside, Riverside, CA, United States
| | - Jared Dube
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Konstantinos Karydis
- Department of Electrical and Computer Engineering, University of California, Riverside, Riverside, CA, United States
| | - Elena Kokkoni
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
2
|
Mathew A, Rama E, Kang K, Williams K, Birchall M, Iliadou E. Management Options for Bilateral Vocal Fold Impairment: Scoping Review to Assess the Potential of Soft Robotics Solutions. J Voice 2024:S0892-1997(24)00151-6. [PMID: 38849232 DOI: 10.1016/j.jvoice.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVES This scoping review aims to comprehensively assess current surgical interventions for bilateral vocal fold paralysis (BVFP), addressing the heterogeneity in treatment outcomes. Additionally, it explores the potential role of soft robotics as an innovative approach to improve outcomes in BVFP management. METHODS This scoping review systematically examines literature from MEDLINE, Embase, and Scopus databases. Inclusion criteria encompass studies related to BVFP management with measurable subjective or objective outcomes. Studies with populations solely under the age of 18 were excluded. Four reviewers independently screened 2263 studies, resulting in the selection of 125 papers for data extraction. Information included study characteristics, interventions, and outcomes. Data synthesis involved both quantitative and qualitative analyses. RESULTS The review identified 145 surgical interventions grouped into seven types: tracheostomy, cordectomy, arytenoidectomy, lateralization, combined procedures and others. Outcome measures fit into the following categories: "objective voice," "subjective voice," "aerodynamics," "dyspnea," "decannulation," "swallow," and "quality of life." Positive outcomes were predominant across all interventions, with arytenoidectomy and cordectomy showing relatively lower rates of successful objective and subjective voice outcomes. This could be the result of prioritizing improved airway status. Soft robotics is hypothesized as a potential solution to the limitation of current interventions sacrificing voice for breathing. CONCLUSIONS The main aim of current surgical interventions for BVFP is expanding glottic aperture. Yet achieving optimal outcomes remains elusive due to complex airflow dynamics and potential impacts on phonatory function and swallowing. The current review underscores the need for a more nuanced, personalized approach, considering individual anatomical and physiological variations. Soft robotics emerges as a promising avenue to address this variability. However, challenges such as implantation procedures, long-term care, and patient education require careful consideration. Collaboration between medical professionals, engineers, and robotics specialists is essential for translating these principles into practical solutions.
Collapse
Affiliation(s)
- Alan Mathew
- University of Cambridge, Cambridge, United Kingdom.
| | - Essam Rama
- University of Cambridge, Cambridge, United Kingdom
| | - Kiran Kang
- University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
3
|
Ismail R, Ariyanto M, Setiawan JD, Hidayat T, Paryanto, Nuswantara LK. Design and testing of fabric-based portable soft exoskeleton glove for hand grasping assistance in daily activity. HARDWAREX 2024; 18:e00537. [PMID: 38784668 PMCID: PMC11111837 DOI: 10.1016/j.ohx.2024.e00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Hand exoskeleton robots have been developed as rehabilitation robots and assistive devices. Based on the material used, they can be soft or hard exoskeletons. Soft materials such as fabric can be used as a component of the wearable robot to increase comfortability. In this paper, we proposed an affordable soft hand exoskeleton based on fabric and motor-tendon actuation for hand flexion/extension motion assistance in daily activities. On-off control and PI compensator were implemented to regulate finger flexion and extension of the soft exoskeleton. The controllers were embedded into a microcontroller using Simulink software. The input signal command comes from the potentiometer and electromyography (EMG) sensor to drive the flexion/extension movement. Based on the experiments, the proposed controller successfully controlled the exoskeleton hand to facilitate a user in grasping various objects. The proposed soft hand exoskeleton is lightweight, comfortable, portable, and affordable, making it easily manufactured using available hardware and open-source code. The developed soft exoskeleton is a potential assistive device for a person who lost the ability to grasp objects.
Collapse
Affiliation(s)
- Rifky Ismail
- Depertment of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
- Center for Biomechanics Biomaterials Biomechatronics and Biosignal Processing (CBIOM3S) Diponegoro University, Semarang, Indonesia
- Professional Education of Engineers, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
| | - Mochammad Ariyanto
- Depertment of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
- Graduate School of Engineering, Mechanical Engineering Department, Osaka University, Suita, Japan
| | - Joga D. Setiawan
- Depertment of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
- Center for Biomechanics Biomaterials Biomechatronics and Biosignal Processing (CBIOM3S) Diponegoro University, Semarang, Indonesia
| | - Taufik Hidayat
- Depertment of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
- Center for Biomechanics Biomaterials Biomechatronics and Biosignal Processing (CBIOM3S) Diponegoro University, Semarang, Indonesia
| | - Paryanto
- Depertment of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
- Professional Education of Engineers, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
| | - Limbang K. Nuswantara
- Professional Education of Engineers, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
4
|
Cunha B, Ferreira R, Sousa ASP. Home-Based Rehabilitation of the Shoulder Using Auxiliary Systems and Artificial Intelligence: An Overview. SENSORS (BASEL, SWITZERLAND) 2023; 23:7100. [PMID: 37631637 PMCID: PMC10459225 DOI: 10.3390/s23167100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Advancements in modern medicine have bolstered the usage of home-based rehabilitation services for patients, particularly those recovering from diseases or conditions that necessitate a structured rehabilitation process. Understanding the technological factors that can influence the efficacy of home-based rehabilitation is crucial for optimizing patient outcomes. As technologies continue to evolve rapidly, it is imperative to document the current state of the art and elucidate the key features of the hardware and software employed in these rehabilitation systems. This narrative review aims to provide a summary of the modern technological trends and advancements in home-based shoulder rehabilitation scenarios. It specifically focuses on wearable devices, robots, exoskeletons, machine learning, virtual and augmented reality, and serious games. Through an in-depth analysis of existing literature and research, this review presents the state of the art in home-based rehabilitation systems, highlighting their strengths and limitations. Furthermore, this review proposes hypotheses and potential directions for future upgrades and enhancements in these technologies. By exploring the integration of these technologies into home-based rehabilitation, this review aims to shed light on the current landscape and offer insights into the future possibilities for improving patient outcomes and optimizing the effectiveness of home-based rehabilitation programs.
Collapse
Affiliation(s)
- Bruno Cunha
- Center for Rehabilitation Research—Human Movement System (Re)habilitation Area, Department of Physiotherapy, School of Health-Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal;
| | - Ricardo Ferreira
- Institute for Systems and Computer Engineering, Technology and Science—Telecommunications and Multimedia Centre, FEUP, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Andreia S. P. Sousa
- Center for Rehabilitation Research—Human Movement System (Re)habilitation Area, Department of Physiotherapy, School of Health-Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal;
| |
Collapse
|
5
|
Shi Y, Dong W, Lin W, Gao Y. Soft Wearable Robots: Development Status and Technical Challenges. SENSORS (BASEL, SWITZERLAND) 2022; 22:7584. [PMID: 36236683 PMCID: PMC9573304 DOI: 10.3390/s22197584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
In recent years, more and more research has begun to focus on the flexible and lightweight design of wearable robots. During this process, many novel concepts and achievements have been continuously made and shown to the public, while new problems have emerged at the same time, which need to be solved. In this paper, we give an overview of the development status of soft wearable robots for human movement assistance. On the basis of a clear definition, we perform a system classification according to the target assisted joint and attempt to describe the overall prototype design level in related fields. Additionally, it is necessary to sort out the latest research progress of key technologies such as structure, actuation, control and evaluation, thereby analyzing the design ideas and basic characteristics of them. Finally, we discuss the possible application fields, and propose the main challenges of this valuable research direction.
Collapse
Affiliation(s)
| | | | | | - Yongzhuo Gao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology (HIT), Harbin 150001, China
| |
Collapse
|
6
|
Vélez-Guerrero MA, Callejas-Cuervo M, Álvarez JC, Mazzoleni S. Assessment of the Mechanical Support Characteristics of a Light and Wearable Robotic Exoskeleton Prototype Applied to Upper Limb Rehabilitation. SENSORS (BASEL, SWITZERLAND) 2022; 22:3999. [PMID: 35684618 PMCID: PMC9185240 DOI: 10.3390/s22113999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023]
Abstract
Robotic exoskeletons are active devices that assist or counteract the movements of the body limbs in a variety of tasks, including in industrial environments or rehabilitation processes. With the introduction of textile and soft materials in these devices, the effective motion transmission, mechanical support of the limbs, and resistance to physical disturbances are some of the most desirable structural features. This paper proposes an evaluation protocol and assesses the mechanical support properties of a servo-controlled robotic exoskeleton prototype for rehabilitation in upper limbs. Since this prototype was built from soft materials, it is necessary to evaluate the mechanical behavior in the areas that support the arm. Some of the rehabilitation-supporting movements such as elbow flexion and extension, as well as increased muscle tone (spasticity), are emulated. Measurements are taken using the reference supplied to the system's control stage and then compared with an external high-precision optical tracking system. As a result, it is evidenced that the use of soft materials provides satisfactory outcomes in the motion transfer and support to the limb. In addition, this study lays the groundwork for a future assessment of the prototype in a controlled laboratory environment using human test subjects.
Collapse
Affiliation(s)
| | - Mauro Callejas-Cuervo
- Software Research Group, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150002, Colombia;
| | - Juan C. Álvarez
- Multisensor Systems and Robotics Group (SiMuR), Department of Electrical, Electronic, Computer and Systems Engineering, University of Oviedo, C/Pedro Puig Adam, 33203 Gijón, Spain;
| | - Stefano Mazzoleni
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70126 Bari, Italy;
| |
Collapse
|
7
|
Human Joint Torque Estimation Based on Mechanomyography for Upper Extremity Exosuit. ELECTRONICS 2022. [DOI: 10.3390/electronics11091335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Human intention recognition belongs to the algorithm basis for exoskeleton robots to generate synergic movements and provide corresponding assistance. In this article, we acquire and analyze the mechanomyography (MMG) to estimate the current joint torque and apply this method to the rehabilitation training research of the upper extremity exosuit. In order to obtain relatively pure biological signals, a MMG processing method based on the Hilbert-Huang Transform (HHT) is proposed to eliminate the mixed noise and motion artifacts. After extracting features and forming the dataset, a random forest regression (RFR) model is designed to build the mapping relationship between MMG and human joint output through offline learning. In addition, an upper extremity exosuit is constructed for multi-joint assistance. Based on the above research, we develop a torque estimation-based control strategy and make it responsible for the intention understanding and motion servo of this customized system. Finally, an actual test verifies the accuracy and reliability of this recognition algorithm, and an efficiency evaluation experiment also proves the feasibility for power assistance.
Collapse
|
8
|
Janghorban A, Dehghani R. Design and Motion Analysis of a Bio-Inspired Soft Robotic Finger Based on Multi-Sectional Soft Reinforced Actuator. J INTELL ROBOT SYST 2022. [DOI: 10.1007/s10846-022-01579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Power-Efficient Soft Pneumatic Actuator Using Spring-Frame Collateral Compression Mechanism. ACTUATORS 2022. [DOI: 10.3390/act11030076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the ongoing research on soft robots, the performance of soft actuators needs to be enhanced for more wide robotic applications. Currently, most soft robots based on pneumatic actuation are capable of assisting small systems, but they are not fully suited for supporting joints requiring large force and range of motion. This is due to the actuation characteristics of the pneumatic artificial muscle (PAM); they are relatively slow, inefficient, and experience a significant force reduction when the PAM contracts. Hence, we propose a novel PAM based on a spring-frame collateral compression mechanism. With only a single compressed air source, the external mesh-covered and inner spring-frame actuators of the proposed PAM operate simultaneously to generate considerable force. Additionally, the design of the internal actuator within the void space of PAM reduces the air consumption and consequently improves the actuator’s operating speed and efficiency. We experimentally confirmed that the proposed PAM exhibited 31.2% greater force, was 25.6% faster, and consumed 21.5% lower air compared to the conventional McKibben muscles. The performance enhancement of the proposed PAM improves the performance of soft robots, allowing the development of more compact robots with greater assistive range.
Collapse
|
10
|
Pan J, Astarita D, Baldoni A, Dell Agnello F, Crea S, Vitiello N, Trigili E. NESM- γ: An Upper-limb Exoskeleton with Compliant Actuators for Clinical Deployment. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3183926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jun Pan
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Davide Astarita
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Andrea Baldoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | | | - Simona Crea
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Nicola Vitiello
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Emilio Trigili
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| |
Collapse
|
11
|
Khan MA, Saibene M, Das R, Brunner IC, Puthusserypady S. Emergence of flexible technology in developing advanced systems for post-stroke rehabilitation: a comprehensive review. J Neural Eng 2021; 18. [PMID: 34736239 DOI: 10.1088/1741-2552/ac36aa] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/04/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Stroke is one of the most common neural disorders, which causes physical disabilities and motor impairments among its survivors. Several technologies have been developed for providing stroke rehabilitation and to assist the survivors in performing their daily life activities. Currently, the use of flexible technology (FT) for stroke rehabilitation systems is on a rise that allows the development of more compact and lightweight wearable systems, which stroke survivors can easily use for long-term activities. APPROACH For stroke applications, FT mainly includes the "flexible/stretchable electronics", "e-textile (electronic textile)" and "soft robotics". Thus, a thorough literature review has been performed to report the practical implementation of FT for post-stroke application. MAIN RESULTS In this review, the highlights of the advancement of FT in stroke rehabilitation systems are dealt with. Such systems mainly involve the "biosignal acquisition unit", "rehabilitation devices" and "assistive systems". In terms of biosignals acquisition, electroencephalography (EEG) and electromyography (EMG) are comprehensively described. For rehabilitation/assistive systems, the application of functional electrical stimulation (FES) and robotics units (exoskeleton, orthosis, etc.) have been explained. SIGNIFICANCE This is the first review article that compiles the different studies regarding flexible technology based post-stroke systems. Furthermore, the technological advantages, limitations, and possible future implications are also discussed to help improve and advance the flexible systems for the betterment of the stroke community.
Collapse
Affiliation(s)
- Muhammad Ahmed Khan
- Technical University of Denmark, Ørsteds Plads Building 345C, Room 215, Lyngby, 2800, DENMARK
| | - Matteo Saibene
- Technical University of Denmark, Ørsteds Plads, Building 345C, Lyngby, 2800, DENMARK
| | - Rig Das
- Technical University of Denmark, Ørsteds Plads Building 345C, Room 214, Lyngby, 2800, DENMARK
| | | | | |
Collapse
|
12
|
Design and Assist-as-Needed Control of Flexible Elbow Exoskeleton Actuated by Nonlinear Series Elastic Cable Driven Mechanism. ACTUATORS 2021. [DOI: 10.3390/act10110290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exoskeletons can assist the daily life activities of the elderly with weakened muscle strength, but traditional rigid exoskeletons bring parasitic torque to the human joints and easily disturbs the natural movement of the wearer’s upper limbs. Flexible exoskeletons have more natural human-machine interaction, lower weight and cost, and have great application potential. Applying assist force according to the patient’s needs can give full play to the wearer’s remaining muscle strength, which is more conducive to muscle strength training and motor function recovery. In this paper, a design scheme of an elbow exoskeleton driven by flexible antagonistic cable actuators is proposed. The cable actuator is driven by a nonlinear series elastic mechanism, in which the elastic elements simulate the passive elastic properties of human skeletal muscle. Based on an improved elbow musculoskeletal model, the assist torque of exoskeleton is predicted. An assist-as-needed (AAN) control algorithm is proposed for the exoskeleton and experiments are carried out. The experimental results on the experimental platform show that the root mean square error between the predicted assist torque and the actual assist torque is 0.00226 Nm. The wearing experimental results also show that the AAN control method designed in this paper can reduce the activation of biceps brachii effectively when the exoskeleton assist level increases.
Collapse
|
13
|
Development of a revolute-type kinematic model for human upper limb using a matrix approach. ROBOTICA 2021. [DOI: 10.1017/s0263574721001387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractA mathematical model is proposed for a revolute joint mechanism with an n-degree of freedom (DOF). The matrix approach is used for finding the relation between two consecutive links to determine desired link parameters such as position, velocity and acceleration using the forward kinematic approach. The matrix approach was confirmed for a proposed 10 DOF revolute type (R-type) human upper limb model with servo motors at each joint. Two DOFs are considered each at shoulder, elbow and wrist joint, followed by four DOF for the fingers. Two DOFs were considered for metacarpophalangeal (mcp) and one DOF each for proximal interphalangeal (pip) and distal interphalangeal (dip) joints. MATLAB script function was used to evaluate the mathematical model for determining kinematic parameters for all the proposed human upper limb model joints. The simplified method for kinematic analysis proposed in this paper will further simplify the dynamic modeling of any mechanism for determining joint torques and hence, easy to design control system for joint movements.
Collapse
|