1
|
Markina NE, Markin AV, Cialla-May D. Cyclodextrin-assisted SERS determination of fluoroquinolone antibiotics in urine and blood plasma. Talanta 2023; 254:124083. [PMID: 36462278 DOI: 10.1016/j.talanta.2022.124083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
This paper describes the use of cyclodextrins (CDs) to improve the determination of fluoroquinolone antibiotics in human body fluids using surface-enhanced Raman spectroscopy (SERS). CDs were used to (i) prepare the CD-SERS substrate (synthesis and stabilization of silver nanoparticles), (ii) increase the sensitivity of the assay by enhancing the interaction between analyte molecules and the substrate, and (iii) improve the analysis accuracy by reducing the interaction between the substrate and endogenous components of body fluids. Two native CDs (α-CD and β-CD) and two of their derivatives with hydroxypropyl groups were tested, and the best results were obtained with CD-SERS substrate prepared using native β-CD. The CD-SERS assay has been developed and optimized for the determination of commonly used and structurally related fluoroquinolones (ciprofloxacin, norfloxacin, pefloxacin, and levofloxacin) in urine and blood plasma samples. Importantly, the non-significant difference in the interaction of the CD-modified SERS substrate with various fluoroquinolones has been successfully used to develop a versatile assay suitable for the analyte-class-specific analysis. Calibration plots were obtained for concentration ranges suitable for the determination of the antibiotics in urine (50-500 μg mL-1) and blood plasma (1-6 μg mL-1). The following figures of merit were obtained (for urine and blood plasma, respectively): RSD values are ≤15% and ≤23%, LOD values are 2.9-5.8 and 0.05-0.34 μg mL-1, recovery ranges are 96-105% and 91-111%. In addition, the influence of excessive concentrations of some main endogenous components of the body fluids on the analytical signal was studied. This step was used to evaluate possible limitations of the assay associated with the deviation of the composition of the body fluid matrix. Therefore, accounting for the short analysis time (≤15 min) and the use of a portable Raman spectrometer, the proposed assay can be suggested for therapeutic drug monitoring in hospitals.
Collapse
Affiliation(s)
- Natalia E Markina
- Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia
| | - Alexey V Markin
- Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia.
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of the Leibniz Research Alliance "Leibniz Health Technologies", Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| |
Collapse
|
2
|
Conjugates of Chitosan with β-Cyclodextrins as Promising Carriers for the Delivery of Levofloxacin: Spectral and Microbiological Studies. Life (Basel) 2023; 13:life13020272. [PMID: 36836630 PMCID: PMC9960298 DOI: 10.3390/life13020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
In this work, we synthesized chitosan 5 kDa conjugates with β-cyclodextrins with various substituents as promising mucoadhesive carriers for the delivery of fluoroquinolones using the example of levofloxacin. The obtained conjugates were comprehensively characterized by spectral methods (UV-Vis, ATR-FTIR, 1H NMR, SEM). The physico-chemical properties of the complex formations were studied by IR, UV, and fluorescence spectroscopy. The dissociation constants of complexes with levofloxacin were determined. Complexation with conjugates provided four times slower drug release in comparison with plain CD and more than 20 times in comparison with the free drug. The antibacterial activity of the complexes was tested on model microorganisms Gram-negative bacteria Escherichia coli ATCC 25922 and Gram-positive Bacillus subtilis ATCC 6633. The complex with the conjugate demonstrated the same initial levofloxacin antibacterial activity but provided significant benefits, e.g., prolonged release.
Collapse
|
3
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
4
|
Li Y, Zhou J, Gu J, Shao Q, Chen Y. Enhanced antibacterial activity of levofloxacin/hydroxypropyl-β-cyclodextrin inclusion complex: In vitro and in vivo evaluation. Colloids Surf B Biointerfaces 2022; 215:112514. [PMID: 35490541 DOI: 10.1016/j.colsurfb.2022.112514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/05/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
Levofloxacin is the levo-enantiomer of ofloxacin (a fluoroquinolone class of antibacterial drug). Cyclodextrins (CDs) including hydroxypropyl-β-cyclodextrin (HPβCD) are generally used as a chiral selector for the enantioseparation of some drugs including levofloxacin or as a drug/food nanocarrier for the efficacy improvement of many pharmaceuticals. We hypothesized that the cyclodextrin inclusion is potentially able to further improve the antibacterial activity of levofloxacin. To test this hypothesis, the levofloxacin/HPβCD inclusion complex was prepared by the freeze-drying method and characterized by phase solubility diagram, differential scanning calorimetry (DSC), X-ray diffractometry (XRD), UV-Vis spectrophotometer, and 1H NMR spectroscopy, confirming the successful HPβCD inclusion of levofloxacin. The in vitro antibacterial effects of HPβCD, levofloxacin, and the levofloxacin/HPβCD inclusion complex against four different bacterial strains in liquid media and on agar plates were determined/compared (an MIC90 of 0.5-1.0 μg/mL for the inclusion complex compared with that of 1.0-2.0 μg/mL for free levofloxacin in liquid). Moreover, the in vivo antibacterial effects of levofloxacin and levofloxacin/HPβCD inclusion complex were tested by using a skin scald model in mice infected with Staphylococcus aureus, and decreased amounts of both bacteria and leukocytes were detected in scalded skin after the inclusion complex treatment. The data revealed that the levofloxacin/HPβCD inclusion complex had an enhanced antibacterial activity compared with free levofloxacin. It implies that cyclodextrins (e.g. HPβCD) may have a beneficial role when using as a chiral selector or as a drug nanocarrier for levofloxacin and that the levofloxacin/HPβCD inclusion complex has the potential of being developed into a pharmaceutical for antibacterial therapies.
Collapse
Affiliation(s)
- Yuanfang Li
- Jiangxi Key Laboratory for Microscale interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Jinhua Zhou
- Jiangxi Key Laboratory for Microscale interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Jiaxuan Gu
- Jiangxi Key Laboratory for Microscale interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Qingqing Shao
- Jiangxi Key Laboratory for Microscale interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Yong Chen
- Jiangxi Key Laboratory for Microscale interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, PR China.
| |
Collapse
|
5
|
Lachowicz M, Stańczak A, Kołodziejczyk M. Characteristic of Cyclodextrins: Their Role and Use in the Pharmaceutical Technology. Curr Drug Targets 2021; 21:1495-1510. [PMID: 32538725 DOI: 10.2174/1389450121666200615150039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 02/05/2023]
Abstract
About 40% of newly-discovered entities are poorly soluble in water, and this may be an obstacle in the creation of new drugs. To address this problem, the present review article examines the structure and properties of cyclodextrins and the formation and potential uses of drug - cyclodextrin inclusion complexes. Cyclodextrins are cyclic oligosaccharides containing six or more D-(+)- glucopyranose units linked by α-1,4-glycosidic bonds, which are characterized by a favourable toxicological profile, low local toxicity and low mucous and eye irritability; they are virtually non-toxic when administered orally. They can be incorporated in the formulation of new drugs in their natural form (α-, β-, γ-cyclodextrin) or as chemically-modified derivatives. They may also be used as an excipient in drugs delivered by oral, ocular, dermal, nasal and rectal routes, as described in the present paper. Cyclodextrins are promising compounds with many beneficial properties, and their use may be increasingly profitable for pharmaceutical scientists.
Collapse
Affiliation(s)
- Malwina Lachowicz
- Department of Technology of Drug Form, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Andrzej Stańczak
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Michał Kołodziejczyk
- Department of Technology of Drug Form, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
6
|
Peluso P, Chankvetadze B. Native and substituted cyclodextrins as chiral selectors for capillary electrophoresis enantioseparations: Structures, features, application, and molecular modeling. Electrophoresis 2021; 42:1676-1708. [PMID: 33956995 DOI: 10.1002/elps.202100053] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
CDs are cyclic oligosaccharides consisting of α-d-glucopyranosyl units linked through 1,4-linkages, which are obtained from enzymatic degradation of starch. The coexistence of hydrophilic and hydrophobic regions in the same structure makes these macrocycles extremely versatile as complexing host with application in food, cosmetics, environmental, agriculture, textile, pharmaceutical, and chemical industries. Due to their inherent chirality, CDs have been also successfully used as chiral selectors in enantioseparation science, in particular, for CE enantioseparations. In the last decades, multidisciplinary approaches based on CE, NMR spectroscopy, X-ray crystallography, microcalorimetry, and molecular modeling have shed light on some aspects of recognition mechanisms underlying enantiodiscrimination. With the ever growing improvement of computer facilities, hardware and software, computational techniques have become a useful tool to model at molecular level the dynamics of diastereomeric associate formation to sample low-energy conformations, the binding energies between the enantiomer and the CD, and to profile noncovalent interactions contributing to the stability of CD/enantiomer association. On this basis, the aim of this review is to provide the reader with a critical overview on the applications of CDs in CE. In particular, the contemporary theory of the electrophoretic technique and the main structural features of CDs are described, with a specific focus on techniques, methods, and approaches to model CE enantioseparations promoted by native and substituted CDs. A systematic compilation of all published literature has not been attempted.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Li Punti, Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Tbilisi, Georgia
| |
Collapse
|
7
|
Skuredina AA, Le-Deygen IM, Belogurova NG, Kudryashova EV. Effect of cross-linking on the inclusion complex formation of derivatized β-cyclodextrins with small-molecule drug moxifloxacin. Carbohydr Res 2020; 498:108183. [DOI: 10.1016/j.carres.2020.108183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
|
8
|
Kiss E, Szabó VA, Horváth P. Simple circular dichroism method for selection of the optimal cyclodextrin for drug complexation. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00938-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
Cyclodextrins are very important excipients in the pharmaceutical industry. Given the multitude of native and semisynthetic cyclodextrin derivatives, there is a need for a rapid and reliable method for the selection of the optimal cyclodextrins for further pharmaceutical testing. During our research, circular dichroism (CD) spectroscopy has been successfully used to describe the qualitative and quantitative complexation of model compounds with different cyclodextrins. For the appearance of a circular dichroism signal, either a chiral or a chirally perturbed chromophore is required. Achiral or racemic compounds do not have corresponding circular dichroism spectra and neither do chiral cyclodextrins due to the absence of a chromophore group. During complexation of a chromophoric guest molecule, its absorption transition becomes chirally perturbed in the proximity of a cyclodextrin molecule and an induced circular dichroism (ICD) signal appears. This phenomenon gives an inherent selectivity to the method. The sign and intensity of the induced circular dichroism signal in case of different cyclodextrins provides information about the approximate structure of the complex as well as their stability relative to each other. In this study, we report a straightforward induced circular dichroism -based approach for the rapid preselection of the optimal cyclodextrin. The distinctive features of the method were demonstrated using five azole-type antifungal drug molecules (fluconazole, miconazole, clotrimazole, bifonazole and tioconazole) along with native α-, β-, and γ-cyclodextrins, as well as dimethyl-, trimethyl-, carboxymethyl-, hydroxypropyl- and sulfobuthylether-β-cyclodextrins. In addition, with the aid of this method, 27 stability constants were determined, amongst which 16 have been unavailable in the literature previously.
Graphic abstract
Collapse
|
9
|
Al-Qubaisi MS, Rasedee A, Flaifel MH, Eid EE, Hussein-Al-Ali S, Alhassan FH, Salih AM, Hussein MZ, Zainal Z, Sani D, Aljumaily AH, Saeed MI. Characterization of thymoquinone/hydroxypropyl-β-cyclodextrin inclusion complex: Application to anti-allergy properties. Eur J Pharm Sci 2019; 133:167-182. [DOI: 10.1016/j.ejps.2019.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/26/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
|
10
|
Varghese B, Suliman FO, Al-Hajri A, Al Bishri NSS, Al-Rwashda N. Spectral and theoretical study on complexation of sulfamethoxazole with β- and HPβ-cyclodextrins in binary and ternary systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 190:392-401. [PMID: 28950231 DOI: 10.1016/j.saa.2017.09.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
The inclusion complexes of sulfamethoxazole (SMX) with β-cyclodextrin (βCD) and (2-hydroxypropyl) β-cyclodextrin (HPβCD) were prepared. Fluorescence spectroscopy and electrospray mass spectrometry, ESI-MS, were used to investigate and characterize the inclusion complexation of SMX with cyclodextrins in solutions. Whereas in the solid state the complexes were characterized by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD) and Raman techniques. Enhanced twisted intramolecular charge transfer (TICT), emission as well as local excited (LE) bands were observed upon addition of HPβCD indicate that SMX enters deeper into the cyclodextrins cavity. The stoichiometries and association constants of these complexes have been determined by monitoring the fluorescence data. The effect of presence of ternary components like arginine and cysteine on the complexation efficiency of SMX with cyclodextrins was investigated. Molecular Dynamic simulations were also performed to shed an atomistic insight into the complexation mechanism. The results obtained showed that complexes of SMX with both cyclodextrins are stabilized in aqueous media by strong hydrogen bonding interactions.
Collapse
Affiliation(s)
- Beena Varghese
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-khod 123, Oman
| | - FakhrEldin O Suliman
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-khod 123, Oman.
| | - Aalia Al-Hajri
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-khod 123, Oman
| | - Nahed Surur S Al Bishri
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-khod 123, Oman
| | - Nathir Al-Rwashda
- Department of Applied Chemical Sciences, Jordan University of Science & Technology, P. O. Box 3030, Irbid 22110, Jordan.
| |
Collapse
|
11
|
Current trends in molecular modeling methods applied to the study of cyclodextrin complexes. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0763-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Le-Deygen IM, Skuredina AA, Kudryashova EV. Drug delivery systems for fluoroquinolones: New prospects in tuberculosis treatment. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017050077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Le-Deygen IM, Skuredina AA, Uporov IV, Kudryashova EV. Thermodynamics and molecular insight in guest–host complexes of fluoroquinolones with β-cyclodextrin derivatives, as revealed by ATR-FTIR spectroscopy and molecular modeling experiments. Anal Bioanal Chem 2017; 409:6451-6462. [DOI: 10.1007/s00216-017-0590-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 11/28/2022]
|
14
|
Szabó ZI, Gál R, Gáll Z, Vancea S, Rédai E, Fülöp I, Sipos E, Donáth-Nagy G, Noszál B, Tóth G. Cyclodextrin complexation improves aqueous solubility of the antiepileptic drug, rufinamide: solution and solid state characterization of compound-cyclodextrin binary systems. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0710-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
15
|
Kumar D, Krishnan Y, Paranjothy M, Pal S. Analysis of Molecular Interaction of Drugs within β-Cyclodextrin Cavity by Solution-State NMR Relaxation. J Phys Chem B 2017; 121:2864-2872. [PMID: 28276696 DOI: 10.1021/acs.jpcb.6b11704] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The prime focus of the present study is to employ NMR relaxation measurement to address the intermolecular interactions, as well as motional dynamics, of drugs, viz., paracetamol and aspirin, encapsulated within the β-cyclodextrin (β-CD) cavity. In this report, we have attempted to demonstrate the applicability of nonselective (R1ns), selective (R1se), and bi-selective (R1bs) spin-lattice relaxation rates to infer dynamical parameters, for example, the molecular rotational correlation times (τc) and cross-relaxation rates (σij) of the encapsulated drugs. Molecular rotational correlation times of the free drugs were calculated using the selective relaxation rate in the fast molecular motion time regime (ωH2τc2 ≪ 1 and R1ns/R1se ≈ 1.500), whereas that of the 1:1 complexed drugs were found from the ratio of R1ns/R1se in the intermediate motion time regime (ωH2τc2 ∼ 1 and R1ns/R1se ≈ 1.054), and these values were compared with each other to confirm the formation of inclusion complexes. Furthermore, the cross-relaxation rates were used to evaluate the intermolecular proton distances. Also, density functional theory calculations were performed to determine the minimum energy geometry of the inclusion complexes and the results compared with those from experiments. The report, thus, presents the possibility of utilizing NMR relaxation data, a more cost-effective experiment, to calculate internuclear distances in the case of drug-supramolecule complexes that are generally obtained by extremely time consuming two-dimensional nuclear Overhauser enhancement-based methods. A plausible mode of insertion of the drug molecules into the β-CD cavity has also been described based on experimental NMR relaxation data analysis.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Chemistry, Indian Institute of Technology Jodhpur , Old Residency Road, Ratanada, Jodhpur 342011, India
| | - Yogeshwaran Krishnan
- Department of Chemistry, Indian Institute of Technology Jodhpur , Old Residency Road, Ratanada, Jodhpur 342011, India
| | - Manikandan Paranjothy
- Department of Chemistry, Indian Institute of Technology Jodhpur , Old Residency Road, Ratanada, Jodhpur 342011, India
| | - Samanwita Pal
- Department of Chemistry, Indian Institute of Technology Jodhpur , Old Residency Road, Ratanada, Jodhpur 342011, India
| |
Collapse
|
16
|
Host-guest interaction between Ofloxacin-β-Cyclodextrin complexes in acidic and neutral pH: A fluorescence quenching study. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Advances in the Use of Cyclodextrins as Chiral Selectors in Capillary Electrokinetic Chromatography: Fundamentals and Applications. Chromatographia 2016. [DOI: 10.1007/s10337-016-3167-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Salgado A, Chankvetadze B. Applications of nuclear magnetic resonance spectroscopy for the understanding of enantiomer separation mechanisms in capillary electrophoresis. J Chromatogr A 2016; 1467:95-144. [PMID: 27604161 DOI: 10.1016/j.chroma.2016.08.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022]
Abstract
This review deals with the applications of nuclear magnetic resonance (NMR) spectroscopy to understand the mechanisms of chiral separation in capillary electrophoresis (CE). It is accepted that changes observed in the separation process, including the reversal of enantiomer migration order (EMO), can be caused by subtle modifications in the molecular recognition mechanisms between enantiomer and chiral selector. These modifications may imply minor structural differences in those selector-selectand complexes that arise from the above mentioned interactions. Therefore, it is mandatory to understand the fine intermolecular interactions between analytes and chiral selectors. In other words, it is necessary to know in detail the structures of the complexes formed by the enantiomer (selectand) and the selector. Any differences in the structures of these complexes arising from either enantiomer should be detected, so that enantiomeric bias in the separation process could be explained. As to the nature of these interactions, those have been extensively reviewed, and it is not intended to be discussed here. These interactions contemplate ionic, ion-dipole and dipole-dipole interactions, hydrogen bonding, van der Waals forces, π-π stacking, steric and hydrophobic interactions. The main subject of this review is to describe how NMR spectroscopy helps to gain insight into the non-covalent intermolecular interactions between selector and selectand that lead to enantiomer separation by CE. Examples in which diastereomeric species are created by covalent (irreversible) derivatization will not be considered here. This review is structured upon the different structural classes of chiral selectors employed in CE, in which NMR spectroscopy has made substantial contributions to rationalize the observed enantioseparations. Cases in which other techniques complement NMR spectroscopic data are also mentioned.
Collapse
Affiliation(s)
- Antonio Salgado
- Centro de Espectroscopía de RMN (CERMN), Faculty of Pharmacy, University of Alcalá, University Campus, 28805 Alcalá de Henares, Madrid, Spain.
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia
| |
Collapse
|
19
|
Szabó ZI, Tóth G, Völgyi G, Komjáti B, Hancu G, Szente L, Sohajda T, Béni S, Muntean DL, Noszál B. Chiral separation of asenapine enantiomers by capillary electrophoresis and characterization of cyclodextrin complexes by NMR spectroscopy, mass spectrometry and molecular modeling. J Pharm Biomed Anal 2015; 117:398-404. [PMID: 26440287 DOI: 10.1016/j.jpba.2015.09.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 11/16/2022]
Abstract
The enantiomers of asenapine maleate (ASN), a novel antipsychotic against schizophrenia and mania with bipolar I disorder have been separated by cyclodextrin (CD) modified capillary zone electrophoresis for the first time. 15 different CDs were screened as complexing agents and chiral selectors, investigating the stability of the inclusion complexes and their enantiodiscriminating capacities. Although initially, none of the applied chiral selectors gave baseline separation, β-CD proved to be the most effective chiral selector. In order to improve resolution, an orthogonal experimental design was employed, altering the concentration of background electrolyte, organic modifier, pH, capillary temperature and applied voltage in a multivariate manner. The developed method (160 mM TRIS-acetate buffer pH 3.5, 7 mM β-CD, at 20 °C, applying 15 kV) was successful for baseline separation of ASN enantiomers (R(s)=2.40±0.04). Our method was validated according to ICH guidelines and proved to be sensitive, linear, accurate and precise for the chiral separation of ASN. Properties of the inclusion complexes, such as stoichiometry, atomic level intermolecular host-guest connections are proposed on the basis of ROESY NMR measurement, ESI-MS spectrometry and molecular modeling studies. It was found that the ASN-β-CD complex is of 1:1 composition, and either of the aromatic rings can be accommodated in the β-CD cavity.
Collapse
Affiliation(s)
- Zoltán-István Szabó
- Faculty of Pharmacy, University of Medicine and Pharmacy of Tîrgu Mureș, Romania
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Gergely Völgyi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Balázs Komjáti
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gabriel Hancu
- Faculty of Pharmacy, University of Medicine and Pharmacy of Tîrgu Mureș, Romania
| | - Lajos Szente
- Cyclolab Cyclodextrin Research & Development Laboratory Ltd, Budapest, Hungary
| | - Tamás Sohajda
- Cyclolab Cyclodextrin Research & Development Laboratory Ltd, Budapest, Hungary
| | - Szabolcs Béni
- Department of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | | | - Béla Noszál
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
20
|
Xiao H, Fu X, Liang S, Li Y, Bao JJ, Zhang Y. An approach to the determination of the enantiomeric excess at the extreme case by capillary electrophoresis. J Chromatogr A 2015; 1408:250-4. [DOI: 10.1016/j.chroma.2015.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
|
21
|
Suliman FO, Elbashir AA, Schmitz OJ. Study on the separation of ofloxacin enantiomers by hydroxyl-propyl-β-cyclodextrin as a chiral selector in capillary electrophoresis: a computational approach. J INCL PHENOM MACRO 2015. [DOI: 10.1007/s10847-015-0547-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Escuder-Gilabert L, Martín-Biosca Y, Medina-Hernández MJ, Sagrado S. Cyclodextrins in capillary electrophoresis: recent developments and new trends. J Chromatogr A 2014; 1357:2-23. [PMID: 24947884 DOI: 10.1016/j.chroma.2014.05.074] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 02/07/2023]
Abstract
Despite the fact that extensive research in the field of separations by capillary electrophoresis (CE) has been carried out and many reviews have been published in the last years, a specific review on the use and future potential of cyclodextrins (CDs) in CE is not available. This review focuses the attention in the CD-CE topic over the January 2013-February 2014 period (not covered by previous more general CE-reviews). Recent contributions (reviews and research articles) including practical uses (e.g. solute-CD binding constant estimation and further potentials; 19% of publications), developments and applications (mainly chiral and achiral analysis; 38 and 24% of publications, respectively) are summarized in nine comprehensive tables and are commented. Statistics and predictions related to the CD-CE publications are highlighted in order to infer the current and expected research interests. Finally, trends and initiatives on CD-CE attending to real needs or practical criteria are outlined.
Collapse
Affiliation(s)
- L Escuder-Gilabert
- Departamento de Química Analítica, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Y Martín-Biosca
- Departamento de Química Analítica, Universidad de Valencia, Burjassot, Valencia, Spain
| | - M J Medina-Hernández
- Departamento de Química Analítica, Universidad de Valencia, Burjassot, Valencia, Spain
| | - S Sagrado
- Departamento de Química Analítica, Universidad de Valencia, Burjassot, Valencia, Spain; Centro Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia, Valencia, Spain.
| |
Collapse
|
23
|
Xie HY, Wang ZR, Fu ZF. Highly sensitive trivalent copper chelate-luminol chemiluminescence system for capillary electrophoresis chiral separation and determination of ofloxacin enantiomers in urine samples. J Pharm Anal 2014; 4:412-416. [PMID: 29403908 PMCID: PMC5761357 DOI: 10.1016/j.jpha.2014.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 05/08/2014] [Accepted: 05/19/2014] [Indexed: 11/27/2022] Open
Abstract
A simple, fast and sensitive capillary electrophoresis (CE) strategy combined with chemiluminescence (CL) detection for analysis of ofloxacin (OF) enantiomers was established in the present work. Sulfonated β-cyclodextrin (β-CD) was used as the chiral additive being added into the running buffer of luminol–diperiodatocuprate (III) (K5[Cu(HIO6)2], DPC) chemiluminescence system. Under the optimum conditions, the proposed method was successfully applied to separation and analysis of OF enantiomers with the detection limits (S/N=3) of 8.0 nM and 7.0 nM for levofloxacin and dextrofloxacin, respectively. The linear ranges were both 0.010–100 μM. The method was utilized for analyzing OF in urine; the results obtained were satisfactory and recoveries were 89.5–110.8%, which demonstrated the reliability of this method. This approach can also be further extended to analyze different commercial OF medicines.
Collapse
Affiliation(s)
- Hao-Yue Xie
- Key Laboratory of Luminescence and Real-Time Analysis (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.,Zigong Institute for Food and Drug Control, Zigong 643010, China
| | - Zuo-Rong Wang
- Key Laboratory of Luminescence and Real-Time Analysis (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Zhi-Feng Fu
- Key Laboratory of Luminescence and Real-Time Analysis (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|