1
|
Pashirova TN, Burilova EA, Lukashenko SS, Gaysin NK, Gnezdilov OI, Sapunova AS, Fernandes AR, Voloshina AD, Souto EB, Zhiltsova EP, Zakharova LY. Nontoxic antimicrobial micellar systems based on mono- and dicationic Dabco-surfactants and furazolidone: Structure-solubilization properties relationships. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.112062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
2
|
Zakharova LY, Pashirova TN, Doktorovova S, Fernandes AR, Sanchez-Lopez E, Silva AM, Souto SB, Souto EB. Cationic Surfactants: Self-Assembly, Structure-Activity Correlation and Their Biological Applications. Int J Mol Sci 2019; 20:E5534. [PMID: 31698783 PMCID: PMC6888607 DOI: 10.3390/ijms20225534] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
The development of biotechnological protocols based on cationic surfactants is a modern trend focusing on the fabrication of antimicrobial and bioimaging agents, supramolecular catalysts, stabilizers of nanoparticles, and especially drug and gene nanocarriers. The main emphasis given to the design of novel ecologically friendly and biocompatible cationic surfactants makes it possible to avoid the drawbacks of nanoformulations preventing their entry to clinical trials. To solve the problem of toxicity various ways are proposed, including the use of mixed composition with nontoxic nonionic surfactants and/or hydrotropic agents, design of amphiphilic compounds bearing natural or cleavable fragments. Essential advantages of cationic surfactants are the structural diversity of their head groups allowing of chemical modification and introduction of desirable moiety to answer the green chemistry criteria. The latter can be exemplified by the design of novel families of ecological friendly cleavable surfactants, with improved biodegradability, amphiphiles with natural fragments, and geminis with low aggregation threshold. Importantly, the development of amphiphilic nanocarriers for drug delivery allows understanding the correlation between the chemical structure of surfactants, their aggregation behavior, and their functional activity. This review focuses on several aspects related to the synthesis of innovative cationic surfactants and their broad biological applications including antimicrobial activity, solubilization of hydrophobic drugs, complexation with DNA, and catalytic effect toward important biochemical reaction.
Collapse
Affiliation(s)
- Lucia Ya. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8, ul. Arbuzov, Kazan 420088, Russia; (L.Y.Z.); (T.N.P.)
- Department of Organic Chemistry, Kazan State Technological University, ul. Karla Marksa 68, Kazan 420015, Russia
| | - Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8, ul. Arbuzov, Kazan 420088, Russia; (L.Y.Z.); (T.N.P.)
| | - Slavomira Doktorovova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.D.); (A.R.F.); (E.S.-L.)
| | - Ana R. Fernandes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.D.); (A.R.F.); (E.S.-L.)
| | - Elena Sanchez-Lopez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.D.); (A.R.F.); (E.S.-L.)
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28702 Madrid, Spain
| | - Amélia M. Silva
- Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Selma B. Souto
- Department of Endocrinology of S. João Hospital, Alameda Prof. Hernâni Monteiro, 4200–319 Porto, Portugal;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.D.); (A.R.F.); (E.S.-L.)
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
5
|
Gus´kov VY, Semenov VE, Gainullina YY, Mikhailov AS, Kudasheva FK. Thermodynamic characteristics of adsorption of organic molecules on pyrimidinophane. Russ Chem Bull 2015. [DOI: 10.1007/s11172-015-0936-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Podyachev SN, Semenov VE, Syakaev VV, Kashapova NE, Sudakova SN, Voronina JK, Mikhailov AS, Voloshina AD, Reznik VS, Konovalov AI. Metal binding properties of pyrimidinophanes and their acyclic counterparts. RSC Adv 2014. [DOI: 10.1039/c3ra47571a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Semenov VE, Giniyatullin RK, Lushchekina SV, Kots ED, Petrov KA, Nikitashina AD, Minnekhanova OA, Zobov VV, Nikolsky EE, Masson P, Reznik VS. Macrocyclic derivatives of 6-methyluracil as ligands of the peripheral anionic site of acetylcholinesterase. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00225c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrimidinophanes 2a,b bind AChE in the PAS or in the active centre depending on the nature of the spacer between ammonium moieties. Pyrimidinophane 2b and its acyclic counterpart abolished symptoms of muscle weakness.
Collapse
Affiliation(s)
| | | | | | | | - Konstantin A. Petrov
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan 420088, Russia
- Kazan Institute of Biochemistry and Biophysics
- Kazan 420111, Russia
- Kazan Federal University
| | - Alexandra D. Nikitashina
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan 420088, Russia
- Kazan Institute of Biochemistry and Biophysics
- Kazan 420111, Russia
- Kazan Federal University
| | | | - Vladimir V. Zobov
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan 420088, Russia
- Kazan Federal University
- Kazan 420000, Russia
| | - Evgeny E. Nikolsky
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan 420088, Russia
- Kazan Institute of Biochemistry and Biophysics
- Kazan 420111, Russia
- Kazan Federal University
| | - Patrick Masson
- Kazan Federal University
- Kazan 420000, Russia
- DYNAMOP
- Institut de Biologie Structurale
- Grenoble 38000, France
| | - Vladimir S. Reznik
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan 420088, Russia
| |
Collapse
|