1
|
Boroushaki T, Dekamin MG. Interactions between β-cyclodextrin as a carrier for anti-cancer drug delivery: a molecular dynamics simulation study. J Biomol Struct Dyn 2023; 41:11551-11563. [PMID: 36597916 DOI: 10.1080/07391102.2022.2164058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
A series of molecular dynamics simulations were performed on 5-fluorouracil (5-Fu), Alendronate (Ald), and Temozolomide (TMZ) anticancer drugs in the presence and absence of β-cyclodextrin (βCD) as a carrier. Thermodynamic investigations showed that the van der Waals interaction energy was dominant in loading all drugs inside the βCD cavity. The sum of the interaction energies illustrated that the highest affinity was related to Ald (-136.5 kJ/mol), which in turn was due to the presence of bulky and charged atoms of phosphorus and oxygen, although TMZ (-115.92 kJ/mol) showed a very high affinity as well. At the same time, the hydrogen bond analysis also represented that Ald had the most hydrogen bond (1.97) with the highest half-life (3.13 ps) with βCD. Investigation of the root mean fluctuation (RMSF) indicated that all the drugs had a relatively rigid structure and maintain this rigidity during loading in the βCD cavity, and in the meantime, Ald was slightly more flexible than 5-Fu and TMZ. The area of the primary hydroxyl rim decreased in all drug-containing systems, which in turn was caused by the attractive interaction of drugs with oxygens in the primary hydroxyl rim. Especially for those drugs that were able to penetrate to the end of the primary hydroxyl rim of the βCD, that means TMZ and 5-Fu. Meanwhile, due to the lack of Ald penetration to the end of the primary hydroxyl rim, the area change in the Ald-containing system was less than in the two others.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tahereh Boroushaki
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
2
|
Gamboa-Carballo JJ, Ferino-Pérez A, Rana VK, Levalois-Grützmacher J, Gaspard S, Montero-Cabrera LA, Jáuregui-Haza UJ. Theoretical Evaluation of the Molecular Inclusion Process between Chlordecone and Cyclodextrins: A New Method for Mitigating the Basis Set Superposition Error in the Case of an Implicit Solvation Model. J Chem Inf Model 2020; 60:2115-2125. [DOI: 10.1021/acs.jcim.9b01064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Juan José Gamboa-Carballo
- Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana, Avenida Salvador Allende 1110, La Habana CP 10600, Cuba
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich CH-8093, Switzerland
| | - Anthuan Ferino-Pérez
- Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana, Avenida Salvador Allende 1110, La Habana CP 10600, Cuba
| | - Vijay Kumar Rana
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich CH-8093, Switzerland
| | - Joëlle Levalois-Grützmacher
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich CH-8093, Switzerland
- Department of Chemistry, Université des Antilles, Fouillole, Pointe-à-Pitre 97157, Guadeloupe, France
| | - Sarra Gaspard
- Laboratoire COVACHIM M2E, Université des Antilles, Fouillole, Pointe-à-Pitre 97157, Guadeloupe, France
| | | | - Ulises Javier Jáuregui-Haza
- Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana, Avenida Salvador Allende 1110, La Habana CP 10600, Cuba
- Instituto Tecnológico de Santo Domingo, Av. de Los Próceres 49, Santo Domingo 10602, Dominican Republic
| |
Collapse
|
3
|
Zhang N, Zane CP, Chen Y, Yildirim E, Hinks D, Tonelli AE, Vinueza NR, Pasquinelli MA. Physical Characterization of Inclusion Complexes of Triphenyl Phosphate and Cyclodextrins in Solution. J Phys Chem B 2020; 124:404-412. [PMID: 31845800 DOI: 10.1021/acs.jpcb.9b09029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The goal of this work is to provide physical insights into the formation and stability of inclusion complexes (ICs) in aqueous solution between cyclodextrins (CDs) and a common flame retardant, triphenyl phosphate (TPP). Quantum chemistry calculations reveal the possible energetically favorable geometries of TPP in their 1:1 IC form with α-, β-, and γ-CDs as well as their associated complexation, conformational, and interaction energies. High-resolution mass spectrometry (MS) and tandem MS were used with electrospray ionization to study the soluble ICs formed between TPP and CDs. Successful formation of TPP ICs with both β- and γ-CD in solution was detected in the ratio of 1:1 using high-resolution MS in the positive ion mode. Collision-induced dissociation confirmed the formation of TPP ICs with β- and γ-CDs by generating two product ions, TPP and β- or γ-CD, in both cases. Although quantum chemistry calculations suggest that IC formation with α-CD is energetically possible, an IC with α-CD is not observed in aqueous solution using MS, which aligns with what we also previously observed in the solid state. Since TPP forms stable ICs with β- and γ-CDs both in the solid state and in solution suggests that complexation could be a safer alternative than applying TPP directly to a substrate. In addition, complexation with CDs in solution also opens up new processing methods to create flame-retardant fabrics and foams with TPP.
Collapse
Affiliation(s)
- Nanshan Zhang
- Fiber and Polymer Science Program , North Carolina State University , Campus Box 8301 , Raleigh , North Carolina 27695-8301 , United States
| | - Cody P Zane
- Fiber and Polymer Science Program , North Carolina State University , Campus Box 8301 , Raleigh , North Carolina 27695-8301 , United States
| | - Yufei Chen
- Fiber and Polymer Science Program , North Carolina State University , Campus Box 8301 , Raleigh , North Carolina 27695-8301 , United States
| | - Erol Yildirim
- Fiber and Polymer Science Program , North Carolina State University , Campus Box 8301 , Raleigh , North Carolina 27695-8301 , United States
| | - David Hinks
- Fiber and Polymer Science Program , North Carolina State University , Campus Box 8301 , Raleigh , North Carolina 27695-8301 , United States
| | - Alan E Tonelli
- Fiber and Polymer Science Program , North Carolina State University , Campus Box 8301 , Raleigh , North Carolina 27695-8301 , United States
| | - Nelson R Vinueza
- Fiber and Polymer Science Program , North Carolina State University , Campus Box 8301 , Raleigh , North Carolina 27695-8301 , United States
| | - Melissa A Pasquinelli
- Fiber and Polymer Science Program , North Carolina State University , Campus Box 8301 , Raleigh , North Carolina 27695-8301 , United States
| |
Collapse
|
4
|
Ponikvar-Svet M, Zeiger DN, Liebman JF. Interplay of thermochemistry and Structural Chemistry: the journal (volume 29, 2018, issues 5–6) and the discipline. Struct Chem 2019. [DOI: 10.1007/s11224-019-01398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Silion M, Fifere A, Lungoci AL, Marangoci NL, Ibanescu SA, Zonda R, Rotaru A, Pinteală M. Mass Spectrometry as a Complementary Approach for Noncovalently Bound Complexes Based on Cyclodextrins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:685-701. [PMID: 31347079 DOI: 10.1007/978-3-030-15950-4_41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An important and well-designed solution to overcome some of the problems associated with new drugs is provided by the molecular encapsulation of the drugs in the cyclodextrins (CDs) cavity, yielding corresponding inclusion complexes (ICs). These types of non-covalent complexes are of current interest to the pharmaceutical industry, as they improve the solubility, stability and bioavailability of the guest molecules. This review highlights several methods for cyclodextrin ICs preparation and characterization, focusing mostly on the mass spectrometry (MS) studies that have been used for the detection of noncovalent interactions of CDs inclusion complexes and binding selectivity of guest molecules with CDs. Furthermore, the MS investigations of several ICs of the CD with antifungal, antioxidants or fluorescent dyes are presented in greater details, pointing out the difficulties overcome in the analysis of this type of compounds.
Collapse
Affiliation(s)
- Mihaela Silion
- Advanced Research Centre for Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania.
| | - Adrian Fifere
- Advanced Research Centre for Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Ana Lacramioara Lungoci
- Advanced Research Centre for Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Narcisa Laura Marangoci
- Advanced Research Centre for Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Sorin Alexandru Ibanescu
- Advanced Research Centre for Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Radu Zonda
- Advanced Research Centre for Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Alexandru Rotaru
- Advanced Research Centre for Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Mariana Pinteală
- Advanced Research Centre for Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| |
Collapse
|
6
|
Golmohamadpour A, Bahramian B, Shafiee A, Ma’mani L. Slow Released Delivery of Alendronate Using β-Cyclodextrine Modified Fe–MOF Encapsulated Porous Hydroxyapatite. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0871-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Factors Affecting the Formation of 2:1 Host:Guest Inclusion Complexes of 2-[(R-Phenyl)amine]-1,4-naphthalenediones (PAN) in β- and γ-Cyclodextrins. Molecules 2016; 21:molecules21111568. [PMID: 27869734 PMCID: PMC6274144 DOI: 10.3390/molecules21111568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 12/03/2022] Open
Abstract
The molecular hosts cyclodextrins form inclusion complexes with a wide variety of guests, resulting in complexes with various host:guest stoichiometries. In the case of a series of 19 1,4-naphthoquinolines as guests with either β- or γ-cyclodextrin studied using electrospray mass spectroscopy, in most cases only 1:1 complexes were observed, with 2:1 host:guest complexes observed in just 6 out of 38 host:guest combinations. It is shown that these higher-order complexes were observed only in the case of small (or no) electronically withdrawing substituents, and were much less likely in the case of the larger γ-cyclodextrin host. The size and electronic properties of the substituents involved shows that both steric and electronic factors must be taken into account in predicting which cyclodextrin host:guest stoichiometries will be stable enough to form (or once formed, be robust enough to be observed in the ESI-MS experiments). It is clear that the prediction of host-guest stoichiometry for a specific host-guest pair is complicated, and involves a subtle interplay of both electronic and steric factors. However, there are definite trends, which can be used to help predict host:guest stoichiometry for a given host-guest pair.
Collapse
|
8
|
Cyclodextrins: A promising drug delivery vehicle for bisphosphonate. Carbohydr Polym 2016; 156:285-293. [PMID: 27842825 DOI: 10.1016/j.carbpol.2016.09.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/07/2016] [Accepted: 09/11/2016] [Indexed: 11/23/2022]
Abstract
Bisphosphonates are well established pharmaceutical drugs with wide applications in medicine. Nevertheless, the side chain and the nature of phosphorous groups could induce a poor aqueous solubility and act on their bioavailability. At the same time, cyclodextrins are cage molecules that facilitate transport of hydrophobic molecules to enhance the intestinal drug absorption of these molecules by forming inclusion complexes. Here we demonstrate that cyclodextrins could be used as a bisphosphonate carrier. The formation of cyclodextrins-bisphosphonate complexes was characterized by 1D and 2D NMR spectroscopy, Isothermal Titration Calorimetry and UV-vis spectroscopy. The results revealed that only the side chain of bisphosphonate was involved in the inclusion phenomenon and its length was a crucial parameter in the control of affinity. Findings from this study suggest that cyclodextrin will be a useful carrier for bisphosphonates.
Collapse
|
9
|
Water-soluble inclusion complexes of trans-polydatin by cyclodextrin complexation: Preparation, characterization and bioactivity evaluation. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.03.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Oda M, Kuroda M. Molecular dynamics simulations of inclusion complexation of glycyrrhizic acid and cyclodextrins (1:1) in water. J INCL PHENOM MACRO 2016. [DOI: 10.1007/s10847-016-0626-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Novel water-soluble fisetin/cyclodextrins inclusion complexes: Preparation, characterization, molecular docking and bioavailability. Carbohydr Res 2015; 418:20-28. [PMID: 26531135 DOI: 10.1016/j.carres.2015.09.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/07/2015] [Accepted: 09/25/2015] [Indexed: 12/22/2022]
Abstract
Novel water-soluble inclusion complexes for fisetin (FIT) were developed by introducing β-cyclodextrin (β-CD) and γ-CD. Properties of the obtained complexes, as well as the interactions between each component, were systematically investigated in both solution and solid states by means of ESI-MS, NMR, FT-IR, XRD, DSC, SEM etc. All characterization information demonstrated that FIT/CDs inclusion complexes were formed, and exhibited different spectroscopic features and properties from FIT. A complex with 1:1 stoichiometry of FIT and CDs was confirmed with Job's method. Meanwhile, as supported by molecular modeling calculations, we suggested that phenyl group (C ring) of FIT molecule was included in the CDs cavity from the wide side. Moreover, the water solubility of FIT/CDs was successfully improved from 2.8 mg/mL (in ethanol aqueous solution) to 4.5 mg/mL (FIT/β-CD complex) and 7.8 mg/mL (FIT/γ-CD complex), and higher thermal stability results were shown by thermal analysis for those complexes. Notably, the inclusion complexes displayed almost two times higher cytotoxicity compared to free FIT against Hela and MCF-7 cells. These results suggested that FIT/CDs complexes could be potentially useful in food industry and healthcare area.
Collapse
|
12
|
Shah M, Shah V, Ghosh A, Zhang Z, Minko T. Molecular Inclusion Complexes of β-Cyclodextrin Derivatives Enhance Aqueous Solubility and Cellular Internalization of Paclitaxel: Preformulation and In vitro Assessments. ACTA ACUST UNITED AC 2015; 2:8. [PMID: 25950011 DOI: 10.13188/2327-204x.1000011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Drugs with low aqueous solubility and permeability possess substantial challenges in designing effective and safe formulations. Synergistic solubility and permeability enhancement in a simple formulation can increase bioavailability and efficacy of such drugs. To overcome limitations of the clinical formulation of Taxol®, Paclitaxel (PTX) was reformulated with various β-cyclodextrin (CD) derivatives suitable for parenteral administration. Results indicated that β-CDs can efficiently form complexes with PTX at lower molar ratios, enhance aqueous solubility up to 500 times and improved cellular internalization of PTX. All β-CD derivatives were found to be safe as excipient since none showed detectable signs of cyto-genotoxicity. As a result, the CD-PTX complexes significantly increased the cytotoxicity of the drug. The study concluded that CD-PTX formulations could substitute the current intravenous infusion of PTX obviating the use of non-inert excipient Cremophor EL.
Collapse
Affiliation(s)
- Milin Shah
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Vatsal Shah
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Anasuya Ghosh
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Zheng Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA ; New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Tamara Minko
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|