Yang R, Li Y, Hua C, Sun Y, Li H, Wei B, Dong H, Liu K. Heat-Set Supramolecular Hydrogelation by Regulating the Hydrophilic-Lipophilic Balance for a Tunable Circularly Polarized Luminescent Switch.
SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024;
20:e2307948. [PMID:
38016077 DOI:
10.1002/smll.202307948]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Indexed: 11/30/2023]
Abstract
Heat-set supramolecular gels exhibited totally opposite phase behaviors of dissolution upon cooling and gelation on heating. They are commonly discovered by chance and their rational design remains a great challenge. Herein, a rational design strategy is proposed to realize heat-set supramolecular hydrogelation through regulation of the hydrophilic-lipophilic balance of the system. A newly synthesized amphiphile hydrogelator with pyrene embedded in its lipophilic terminal can self-assemble into a hydrogel through a heating and cooling cycle. However, the host-guest complex of the gelator and hydrophilic γ-cyclodextrin (γ-CyD) results in a sol at room temperature. Thus, heat-set hydrogelation is realized from the sol state in a controllable manner. Heat-set gelation mechanism is revealed by exploring critical heat-set supramolecular gelation and the related findings provide a general strategy for developing new functional molecular gels with tunable hydrophilic-lipophilic balance.
Collapse