Velázquez-Carriles CA, Carbajal-Arizaga GG, Silva-Jara JM, Reyes-Becerril MC, Aguilar-Uscanga BR, Macías-Rodríguez ME. Chemical and biological protection of food grade nisin through their partial intercalation in laminar hydroxide salts.
Journal of Food Science and Technology 2020;
57:3252-3258. [PMID:
32728273 DOI:
10.1007/s13197-020-04356-y]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/12/2020] [Accepted: 03/17/2020] [Indexed: 11/30/2022]
Abstract
The use of antimicrobial agents within a matrix, specifically layered compounds, is of growing interest for reducing contamination due to food borne pathogens and deteriorative microorganisms, one of the main health problems worldwide. In this study, zinc layered hydroxide nanoparticles were synthesized as a matrix for nisin immobilization. Layered materials were characterized by X-ray diffraction, Fourier-Transform Infrared and Ultra Violet-Visible spectra, Scanning Electron Microscopy, and by Thermogravimetric Analysis. Thermal, chemical, enzymatic, and biological stabilities were assessed against Lactobacillus brevis as control strain. Free and immobilized nisin in solution were previously subjected to 25 and 121 °C, pH (7, 9) and inactivation with protease before antimicrobial tests that lasted 21 days. Immobilized nisin was found to maintain the activity levels after the protease action while the pure nisin solution lost its activity gradually. Furthermore, immobilized nisin treated at 121 °C and pH 7 showed higher activity than pure nisin after 21 days. These results may support that immobilizing nisin in zinc layered hydroxide salts promoted extended nisin inhibitory activity in solution after thermal, chemical or enzymatic treatments. This research provides an alternative to nisin application that could be used in processes where such operating conditions take place, as in dairy products.
Collapse