1
|
Li C, Yang D, Li L, Wang Y, Chen S, Zhao Y, Lin W. Comparison of the taste mechanisms of umami and bitter peptides from fermented mandarin fish ( Chouguiyu) based on molecular docking and electronic tongue technology. Food Funct 2023; 14:9671-9680. [PMID: 37850257 DOI: 10.1039/d3fo02697c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Unclear taste mechanisms of peptides limit rapid screening of taste peptides with high intensity. In this study, the taste mechanisms of umami and bitter peptides from Chouguiyu were compared. After molecular docking of core umami (NWDDMEK, WFKDEEF, EEEKPKF, DFDDIQK, and DGEKVDF) and bitter (VQDVLKL, VELLKLE, LVVDGVK, VVDLTVR, and VVDGVKL) peptides with T1R1/T1R3 and TASR14, respectively, salt bridges and conventional hydrogen bonds were the main interactions in all taste peptides, in which acidic amino acid residues contributed to the interaction with their receptors. The taste intensity of peptides after solid-phase synthesis was further verified using electronic tongue technology. Spearman correlation analysis showed that docking energy was an important factor for the intensity of taste peptides, while interaction energy and the distance between the binding unit (BU) and the stimulating unit (SU) were also responsible for the bitter intensity. This study provides a theoretical basis to screen novel taste peptides with high taste intensity in fermented foods.
Collapse
Affiliation(s)
- Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Daqiao Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
- College of Life Sciences, Linyi University, Linyi 276000, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Wanling Lin
- School of Life Science and Food Engineering, Hanshan Normal University, Chaozhou 521041, China
| |
Collapse
|
2
|
Adamkiewicz L, Szeleszczuk Ł. Review of Applications of Cyclodextrins as Taste-Masking Excipients for Pharmaceutical Purposes. Molecules 2023; 28:6964. [PMID: 37836807 PMCID: PMC10574773 DOI: 10.3390/molecules28196964] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
It is widely recognized that many active pharmaceutical ingredients (APIs) have a disagreeable taste that affects patient acceptability, particularly in children. Consequently, developing dosage forms with a masked taste has attracted a lot of interest. The application of cyclodextrins as pharmaceutical excipients is highly appreciated and well established, including their roles as drug delivery systems, solubilizers and absorption promoters, agents that improve drug stability, or even APIs. The first work describing the application of the taste-masking properties of CDs as pharmaceutical excipients was published in 2001. Since then, numerous studies have shown that these cyclic oligosaccharides can be effectively used for such purposes. Therefore, the aim of this review is to provide insight into studies in this area. To achieve this aim, a systematic evaluation was conducted, which resulted in the selection of 67 works representing both successful and unsuccessful works describing the application of CDs as taste-masking excipients. Particular attention has been given to the methods of evaluation of the taste-masking properties and the factors affecting the outcomes, such as the choice of the proper cyclodextrin or guest-host molar ratio. The conclusions of this review reveal that the application of CDs is not straightforward; nevertheless, this solution can be an effective, safe, and inexpensive method of taste masking for pharmaceutical purposes.
Collapse
Affiliation(s)
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-093 Warsaw, Poland;
| |
Collapse
|
3
|
Halavach TM, Kurchenko VP, Tarun EI, Dudchik NV, Yatskou MM, Lodygin AD, Alieva LR, Evdokimov IA, Ulrih NP. Influence of Complexation with β- and γ-Cyclodextrin on Bioactivity of Whey and Colostrum Peptides. Int J Mol Sci 2023; 24:13987. [PMID: 37762289 PMCID: PMC10530839 DOI: 10.3390/ijms241813987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Dairy protein hydrolysates possess a broad spectrum of bioactivity and hypoallergenic properties, as well as pronounced bitter taste. The bitterness is reduced by complexing the proteolysis products with cyclodextrins (CDs), and it is also important to study the bioactivity of the peptides in inclusion complexes. Hydrolysates of whey and colostrum proteins with extensive hydrolysis degree and their complexes with β/γ-CD were obtained in the present study, and comprehensive comparative analysis of the experimental samples was performed. The interaction of CD with peptides was confirmed via different methods. Bioactivity of the initial hydrolysates and their complexes were evaluated. Antioxidant activity (AOA) was determined by fluorescence reduction of fluorescein in the Fenton system. Antigenic properties were studied by competitive enzyme immunoassay. Antimutagenic effect was estimated in the Ames test. According to the experimental data, a 2.17/2.78-fold and 1.45/2.14-fold increase in the AOA was found in the β/γ-CD interaction with whey and colostrum hydrolysates, respectively. A 5.6/5.3-fold decrease in the antigenicity of whey peptides in complex with β/γ-CD was detected, while the antimutagenic effect in the host-guest systems was comparable to the initial hydrolysates. Thus, bioactive CD complexes with dairy peptides were obtained. Complexes are applicable as a component of specialized foods (sports, diet).
Collapse
Affiliation(s)
| | | | - Ekaterina I. Tarun
- Faculty of Environmental Medicine, International Sakharov Environmental Institute of Belarusian State University, 220070 Minsk, Belarus;
| | | | - Mikalai M. Yatskou
- Faculty of Radiophysics and Computer Technologies, Belarusian State University, 220030 Minsk, Belarus;
| | - Aleksey D. Lodygin
- Faculty of Food Engineering and Biotechnologies, North Caucasus Federal University, Stavropol 355017, Russia; (A.D.L.); (L.R.A.); (I.A.E.)
| | - Ludmila R. Alieva
- Faculty of Food Engineering and Biotechnologies, North Caucasus Federal University, Stavropol 355017, Russia; (A.D.L.); (L.R.A.); (I.A.E.)
| | - Ivan A. Evdokimov
- Faculty of Food Engineering and Biotechnologies, North Caucasus Federal University, Stavropol 355017, Russia; (A.D.L.); (L.R.A.); (I.A.E.)
| | | |
Collapse
|
4
|
Jiang S, Wang X, Yu M, Tian J, Chang P, Zhu S. Bitter Peptides in Fermented Soybean Foods - A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01077-3. [PMID: 37410257 DOI: 10.1007/s11130-023-01077-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Fermented soybean foods with a long history are popular worldwide because of rich nutrition. However, many traditional fermented soybean foods have unacceptable bitterness, which mostly comes from the bitter peptides produced from the hydrolysis of soybean proteins. In this review, the bitter peptides in fermented soybean foods is briefly reviewed. The structural properties of bitter receptors and bitter peptides were reviewed. Bitterness is perceived through the binding between bitter compounds and specific sites of bitter receptors (25 hTAS2Rs), which further activate the downstream signal pathway mediated by G-protein. And it converts chemical signals into electrical signals, and transmit them to the brain. In addition, the influencing factors of bitter peptides in fermented soybean foods were summarized. The bitterness of fermented soybean foods primarily results from the raw materials, microbial metabolism during fermentation, unique techniques, and interactions of various flavor compounds. Moreover, the structure-bitterness relationship of bitter peptides was also discussed in this review. The bitterness degree of the bitter peptide is related to the polypeptide hydrophobicity, amino acids in the peptide, peptide molecular weight and polypeptide spatial structure. Studying the bitter peptides and their bitter characteristics in fermented soybean foods is beneficial for improving the sensory quality of fermented soybean foods and prompting more consumers accept them.
Collapse
Affiliation(s)
- Shaoping Jiang
- College of Food Science and Engineering, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin, 130062, China
| | - Xiaodan Wang
- College of Food Science and Engineering, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin, 130062, China.
| | - Maosong Yu
- Tianjin haigang steel coil Co.,Ltd, Tianjin, 301600, China
| | - Jiaxue Tian
- College of Food Science and Engineering, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin, 130062, China
| | - Ping Chang
- College of Food Science and Engineering, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin, 130062, China
| | - Shijie Zhu
- Changchun ZhuLaoLiu Food Co., Ltd, Changchun, 130507, China
| |
Collapse
|
5
|
Xia Y, Zhu L, Wu G, Liu T, Li X, Wang X, Zhang H. Comparative study of various methods used for bitterness reduction from pea (Pisum sativum L.) protein hydrolysates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Weng Z, Sun L, Wang F, Sui X, Fang Y, Tang X, Shen X. Assessment the flavor of soybean meal hydrolyzed with Alcalase enzyme under different hydrolysis conditions by E-nose, E-tongue and HS-SPME-GC-MS. FOOD CHEMISTRY-X 2021; 12:100141. [PMID: 34704014 PMCID: PMC8523844 DOI: 10.1016/j.fochx.2021.100141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/02/2022]
Abstract
Enzymatic hydrolysis with Alcalase reduced soybean odor substance 1-octene-3-ol. Excessive enzymatic hydrolysis resulted in the deterioration of the hydrolysate flavor. The flavour of soybean meal hydrolysates with different hydrolysis conditions could be distinguished by E-tongue.
In the present study, E-nose, E-tongue, and headspace-solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC–MS) technology combined with Principal Component Analysis (PCA) were employed to evaluate the flavor characteristics of the volatile and the non-volatile substances generated during the enzymatic hydrolysis of the soybean meal by Alcalase. The results showed that the enzymatic hydrolysis effectively reduced the content of soybean odorous substance 1-octene-3-ol and led to better flavor. However, the excessive enzymatic hydrolysis resulted in the deterioration of the enzymatic hydrolysates flavor. In addition, both radar graph and PCA of E-tongue were able to provide the distribution of flavor substances during the enzymatic hydrolysis of the soybean meal. These results provided a theoretical basis for the improvement of the flavors of the soybean meal and its derived products.
Collapse
Affiliation(s)
- Zebin Weng
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Sun
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yong Fang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| |
Collapse
|
7
|
Imai K, Ikeda A, Shimizu K, Honda H. Selective Elimination of Bitter Peptides by Adsorption to Heat-treated Porous Silica Gel. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kento Imai
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
| | - Aya Ikeda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
| | - Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
- Innovative Research Center for Preventive Medical Engineering, Nagoya University
| |
Collapse
|