1
|
Sisodiya DS, Chattopadhyay A. The photochemical trans → cis and thermal cis → trans isomerization pathways of azobenzo-13-crown ether: A computational study on a strained cyclic azobenzene system. J Chem Phys 2024; 161:034307. [PMID: 39017425 DOI: 10.1063/5.0206946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
The isomerization of azobenzo-13-crown ether can be expected to be hindered due to the polyoxyethylene linkage connecting the 2,2'-positions of azobenzene. The mixed reference spin-flip time-dependent density functional theory results reveal that the planar and rotational minima of the first photo-excited singlet state (S1) of the trans-isomer pass through a barrier (2.5-5.0 kcal/mol) as it goes toward the torsional conical intersection (S0/S1) geometry (
Collapse
Affiliation(s)
- Dilawar Singh Sisodiya
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K. K. Birla Goa Campus, Zuarinagar, India
| | - Anjan Chattopadhyay
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K. K. Birla Goa Campus, Zuarinagar, India
| |
Collapse
|
2
|
Szulc P, Luboch E, Okuniewski A, Wagner-Wysiecka E. Fluorescence of p-hydroxyazobenzocrowns - Tautomeric equilibrium effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123721. [PMID: 38086231 DOI: 10.1016/j.saa.2023.123721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
The spectroscopic properties of a series of para-hydroxyazobenzocrowns, including three novel compounds, were investigated using UV-Vis absorption and emission spectroscopy. This study presents, for the first time, determined quantum yield (QY) values for macrocycles of this category, ranging between 0.122 and 0.195. The highest values were obtained for crowns bearing two phenyl substituents in benzene rings. The impact of aromatic ring substituents and macroring size on the spectral characterization (1H NMR and FTIR) of p-hydroxyazobenzocrowns was examined in consideration of the azophenol ⇄ quinone-hydrazone tautomeric equilibrium. Dipole moments of p-hydroxyazobenzocrowns in the ground and excited states have been determined. The alignment between experimental findings and theoretical studies was established.
Collapse
Affiliation(s)
- Paulina Szulc
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| | - Elżbieta Luboch
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| | - Andrzej Okuniewski
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| | - Ewa Wagner-Wysiecka
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland; Advanced Materials Center, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
3
|
Chen C, Wu Y, Wang ST, Berisha N, Manzari MT, Vogt K, Gang O, Heller DA. Fragment-based drug nanoaggregation reveals drivers of self-assembly. Nat Commun 2023; 14:8340. [PMID: 38097573 PMCID: PMC10721832 DOI: 10.1038/s41467-023-43560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Drug nanoaggregates are particles that can deleteriously cause false positive results during drug screening efforts, but alternatively, they may be used to improve pharmacokinetics when developed for drug delivery purposes. The structural features of molecules that drive nanoaggregate formation remain elusive, however, and the prediction of intracellular aggregation and rational design of nanoaggregate-based carriers are still challenging. We investigate nanoaggregate self-assembly mechanisms using small molecule fragments to identify the critical molecular forces that contribute to self-assembly. We find that aromatic groups and hydrogen bond acceptors/donors are essential for nanoaggregate formation, suggesting that both π-π stacking and hydrogen bonding are drivers of nanoaggregation. We apply structure-assembly-relationship analysis to the drug sorafenib and discover that nanoaggregate formation can be predicted entirely using drug fragment substructures. We also find that drug nanoaggregates are stabilized in an amorphous core-shell structure. These findings demonstrate that rational design can address intracellular aggregation and pharmacologic/delivery challenges in conventional and fragment-based drug development processes.
Collapse
Affiliation(s)
- Chen Chen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - You Wu
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Shih-Ting Wang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Naxhije Berisha
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- The Graduate Center of the City University of New York, New York, NY, 10016, USA
- Department of Chemistry, Hunter College, City University of New York, New York, 10065, USA
| | - Mandana T Manzari
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Kaleidoscope Technologies, Inc., New York, NY, 10003, USA
| | - Kristen Vogt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Oleg Gang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA
| | - Daniel A Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA.
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
4
|
Nieland E, Voss J, Schmidt BM. Photoresponsive Supramolecular Cages and Macrocycles. Chempluschem 2023; 88:e202300353. [PMID: 37638597 DOI: 10.1002/cplu.202300353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
The utilisation of light to achieve precise manipulation and control over the structure and function of supramolecular assemblies has emerged as a highly promising approach in the development of complex, configurable, or multifunctional systems and nanoscopic machine-like entities. In this minireview, we highlight recent examples of self-assembled and covalently bound cages and macrocycles with a focus on the external and internal functionalisation of a structure with a photoswitchable unit or the embedment of a photoswitch into the framework of a structure. Functionalising the interior or exterior of a supramolecular cage or macrocycle with a photoresponsive group enables control over different properties, such as guest binding or assembly in the solid-state, while the overall shape of the assembly often undergoes no significant change. By directly integrating a photoswitchable unit into the framework of a supramolecular structure, the isomerisation can either induce a geometry change, the disassembly, or the disassembly and reassembly of the structure. Historical and recent examples covered in this review are based on azobenzene, diarylethene, stilbene photoswitches, or alkene motors that were incorporated into macrocycles and cages constructed by metal-organic, dynamic covalent, or covalent bonds.
Collapse
Affiliation(s)
- Esther Nieland
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Jona Voss
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Bernd M Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
5
|
Danil de Namor AF, Al Hakawati N. Anion Complexation by an Azocalix[4]arene Derivative and the Scope of Its Fluoride Complex Salt to Capture CO 2 from the Air. Molecules 2023; 28:6029. [PMID: 37630281 PMCID: PMC10458297 DOI: 10.3390/molecules28166029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
A newly synthesized upper rim azocalix[4]arene, namely 5,11,17,23-tetra[(4-ethylacetoxyphenyl) (azo)]calix[4]arene, CA-AZ has been fully characterized, and its chromogenic and selective properties for anions are reported. Among univalent anions, the receptor is selective for the fluoride anion, and its mode of interaction in solution is discussed. The kinetics of the complexation process were found to be very fast as reflected in the immediate colour change observed with a naked eye resulting from the receptor-anion interaction. An emphasis is made about the relevance in selecting a solvent in which the formulation of the process is representative of the events taking place in the solution. The composition of the fluoride complex investigated using UV/VIS spectrophotometry, conductance measurements and titration calorimetry was 1:1, and the thermodynamics of complexation of anions and CA-AZ in DMSO were determined. The fluoride complex salt was isolated, and a detailed investigation was carried out to assess its ability to remove CO2 from the air. The recycling of the complex was easily achieved. Final conclusions are given.
Collapse
Affiliation(s)
- Angela F. Danil de Namor
- Laboratory of Thermochemistry, School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Nawal Al Hakawati
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Tripoli 1300, Lebanon;
| |
Collapse
|
6
|
Galiński B, Chojnacki J, Wagner-Wysiecka E. Simple colorimetric copper(II) sensor - Spectral characterization and possible applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122472. [PMID: 36801733 DOI: 10.1016/j.saa.2023.122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/28/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
New o-hydroxyazocompound L bearing pyrrole residue was obtained in the simple synthetic protocol. The structure of L was confirmed and analyzed by X-ray diffraction. It was found that new chemosensor can be successfully used as copper(II) selective spectrophotometric regent in solution and can be also applied for the preparation of sensing materials generating selective color signal upon interaction with copper(II). Selective colorimetric response towards copper(II) is manifested by a distinct color change from yellow to pink. Proposed systems were effectively used for copper(II) determination at concentration level 10-8 M in model and real samples of water.
Collapse
Affiliation(s)
- Błażej Galiński
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| | - Jarosław Chojnacki
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| | - Ewa Wagner-Wysiecka
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland; Advanced Materials Center, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
7
|
Suwasia S, Venkataramani S, Babu SA. Pd(II)-catalyzed coupling of C-H bonds of carboxamides with iodoazobenzenes toward modified azobenzenes. Org Biomol Chem 2023; 21:1793-1813. [PMID: 36744837 DOI: 10.1039/d2ob02322a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this paper, we report a synthetic protocol for the construction of biaryl motif-based or π-extended azobenzene and alkylated azobenzene derivatives via the Pd(II)-catalyzed bidentate directing group (DG)-aided C-H activation and functionalization strategy. In the past, the synthesis of biaryl motif-based azobenzenes was accomplished through the traditional cross-coupling reaction involving organometallic reagents and aryl halides or equivalent coupling partners. We have shown the direct coupling of C-H bonds of aromatic/aliphatic carboxamides (possessing a DG) with iodoazobenzenes as the coupling partners through the Pd(II)-catalyzed bidentate DG-aided, site-selective C-H functionalization method. Azobenzene-containing compounds are a versatile class of photo-responsive molecules that have found applications across branches of chemical, biological and materials sciences and are prevalent in medicinally relevant molecules. Accordingly, the synthesis of new and functionalized azobenzene-based scaffolds has been an attractive topic of research. Although the classical methods are efficient, they need pre-functionalized starting materials. This protocol involving the Pd(II)-catalyzed, directing group-aided site-selective C-H arylation of aromatic and aliphatic carboxamides using iodoazobenzene as the coupling partner affording azobenzene-based carboxamides is an additional route and also a contribution towards enriching the library of modified azobenzenes. We have also shown the photoswitching properties of representative compounds synthesized via the Pd(II)-catalyzed directing group-aided site-selective C-H functionalization method.
Collapse
Affiliation(s)
- Sonam Suwasia
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
8
|
Molecular structure of methyl orange and its role in the process of [Pd(Azo)] compound and MOF formation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Padmavathi R, Babu SA. Pd(II)-catalyzed selective β-C-H functionalization of azobenzene carboxamides. Org Biomol Chem 2023; 21:2689-2694. [PMID: 36691730 DOI: 10.1039/d2ob02261c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report a Pd(II)-catalyzed bidentate directing group 8-aminoquinoline-aided, site-selective β-C-H functionalization protocol for assembling modified azobenzene carboxamides. Considering the importance of azobenzenes in chemical sciences, this paper reports a new route for enriching the library of modified azobenzene motifs.
Collapse
Affiliation(s)
- Rayavarapu Padmavathi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
10
|
Marinescu M, Popa CV, Tănase MA, Soare AC, Tablet C, Bala D, Cinteza LO, Diţu LM, Gifu IC, Petcu C. Synthesis, Characterization, DFT Study and Antifungal Activities of Some Novel 2-(Phenyldiazenyl)phenol Based Azo Dyes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8162. [PMID: 36431651 PMCID: PMC9695727 DOI: 10.3390/ma15228162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
In recent decades, there has been an increased interest in azo compounds with special optical and biological properties. In this work, we report the preparation of novel azo-compounds with two and three -N=N- double bonds, using the classical method of synthesis, diazotization and coupling. The compounds were characterized by 1H-NMR, 13C-NMR, FTIR, UV-VIS and fluorescence spectra. DFT calculations were employed for determining the optical parameters, polarizability α, the total static dipole moment μtot, the quadrupole moment Q and the mean first polarizability βtot. All azo derivatives show strong fluorescence emission in solutions. The antioxidant and antifungal activities were determined and the influence of the number of azo bonds was discussed. The synthesized compounds exhibit remarkable efficiency in the growth reduction of standard and clinical isolated Candida strains, suggesting future applications as novel antifungal.
Collapse
Affiliation(s)
- Maria Marinescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90 Soseaua Panduri, 050663 Bucharest, Romania
| | - Claudia Valentina Popa
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90 Soseaua Panduri, 050663 Bucharest, Romania
- Laboratory of Pharmaco-Toxicology, National Institute for Medical Military Research Development “Cantacuzino”, 103 Splaiul Independentei, 050096 Bucharest, Romania
| | - Maria Antonia Tănase
- Physical Chemistry Department, Faculty of Chemistry, University of Bucharest, 4-12 Blv. Regina Elisabeta, 030018 Bucharest, Romania
| | - Andreia Cristina Soare
- Physical Chemistry Department, Faculty of Chemistry, University of Bucharest, 4-12 Blv. Regina Elisabeta, 030018 Bucharest, Romania
| | - Cristina Tablet
- Physical Chemistry Department, Faculty of Chemistry, University of Bucharest, 4-12 Blv. Regina Elisabeta, 030018 Bucharest, Romania
- Faculty of Pharmacy, Titu Maiorescu University, 16 Gh. Sincai Blvd, 040317 Bucharest, Romania
| | - Daniela Bala
- Physical Chemistry Department, Faculty of Chemistry, University of Bucharest, 4-12 Blv. Regina Elisabeta, 030018 Bucharest, Romania
| | - Ludmila Otilia Cinteza
- Physical Chemistry Department, Faculty of Chemistry, University of Bucharest, 4-12 Blv. Regina Elisabeta, 030018 Bucharest, Romania
| | - Lia Mara Diţu
- Microbiology Department, Faculty of Biology, University of Bucharest, 3 Intrarea Portocalelor, 60101 Bucharest, Romania
| | - Ioana Catalina Gifu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Cristian Petcu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania
| |
Collapse
|
11
|
Sıdır İ, Sıdır YG, Berber H, Fausto R. Solvato-, thermo- and photochromism in a new diazo diaromatic dye:2-(p-tolyldiazenyl)naphthalen-1-amine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Zhang XX, Li J, Niu YY. A Review of Crystalline Multibridged Cyclophane Cages: Synthesis, Their Conformational Behavior, and Properties. Molecules 2022; 27:molecules27207083. [PMID: 36296675 PMCID: PMC9607443 DOI: 10.3390/molecules27207083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
This paper reviews the most stable conformation of crystalline three-dimensional cyclophane (CP) achieved by self-assembling based on changing the type of aromatic compound or regulating the type and number of bridging groups. [3n]cyclophanes (CPs) were reported to form supramolecular compounds with bind organic, inorganic anions, or neutral molecules selectively. [3n]cyclophanes ([3n]CPs) have stronger donor capability relative to compound [2n]cyclophanes ([2n]CPs), and it is expected to be a new type of electron donor for the progress of fresh electron conductive materials. The synthesis, conformational behavior, and properties of crystalline multi-bridge rings are summarized and discussed.
Collapse
Affiliation(s)
- Xing-Xing Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Jian Li
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yun-Yin Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
- Correspondence:
| |
Collapse
|
13
|
Naime J, Mamun MSA, Aly Saad Aly M, Maniruzzaman M, Badal MMR, Karim KMR. Synthesis, characterization and application of a novel polyazo dye as a universal acid-base indicator. RSC Adv 2022; 12:28034-28042. [PMID: 36320250 PMCID: PMC9527568 DOI: 10.1039/d2ra04930a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023] Open
Abstract
A novel organic polyazo dye is synthesized by the diazotization of aromatic aniline, followed by coupling it with sulfanilic acid and N,N-dimethylaniline. Characterization was done by 1H-NMR, 13C-NMR, and FTIR spectroscopy. Differential scanning calorimetry (DSC) reveals that phase transition for this molecule is exothermic. The optical band gap is estimated from the absorption cutoff point using UV-Visible spectroscopy. Thermal gravimetric analysis (TGA) addresses the thermal stability of the molecule and is found to be at ∼250 °C. The structure of the synthesized molecule is analogous to that of methyl orange and contains three azo groups. These three azo groups help accept more than two protons and provide two pK a values when diprotic acid or a mixture of acids is used in different titrations. Specifically, when a polybasic acid is in strong base titration, the pK a values were found to be 3.5 and 9.1. Moreover, for strong base and (strong + weak) acid mixture titration, the pK a values are found to be 9.2 and 3.3. Furthermore, the pK a values are found to be 8.6 and 2.8 for (strong and weak) base mixture and (strong and weak) acid mixture titration, respectively. Owing to its increased proton accepting capacity, it can be found in the two pH ranges of 2.1-3.8 for orange color and 8.2-9.8 for yellow color, thus indicating a unique property as a universal indicator for acid-base titration. The dissociation constant of this dye is found to be 3.4 × 10-6, determined in a mixed aqueous solution of 10 wt% ethanol, and a linear relationship between pK a and pH is observed in this solvent system.
Collapse
Affiliation(s)
- Jannatul Naime
- Chemistry Discipline, School of Science, Engineering and Technology, Khulna University Khulna-9208 Bangladesh
| | - Muhammad Shamim Al Mamun
- Chemistry Discipline, School of Science, Engineering and Technology, Khulna University Khulna-9208 Bangladesh
| | - Mohamed Aly Saad Aly
- Department of Electrical and Computer Engineering at Georgia Tech Shenzhen Institute (GTSI), Tianjin University Shenzhen Guangdong 518052 China
| | - Md Maniruzzaman
- Department of Chemistry, Khulna University of Engineering and Technology Khulna-9203 Bangladesh
| | - Md Mizanur Rahman Badal
- Department of Chemistry, Khulna University of Engineering and Technology Khulna-9203 Bangladesh
| | - Kaykobad Md Rezaul Karim
- Chemistry Discipline, School of Science, Engineering and Technology, Khulna University Khulna-9208 Bangladesh
| |
Collapse
|
14
|
Sarraute S, Biesse-Martin AS, Devemy J, Dequidt A, Bonal C, Malfreyt P. Investigation of the Complexation between 4-Aminoazobenzene and Cucurbit[7]uril through a Combined Spectroscopic, Nuclear Magnetic Resonance, and Molecular Simulation Studies. ACS OMEGA 2022; 7:25013-25021. [PMID: 35910107 PMCID: PMC9330255 DOI: 10.1021/acsomega.2c00499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/30/2022] [Indexed: 06/02/2023]
Abstract
Cucurbiturils are well known for their ability to form supramolecular systems with ultrahigh affinities binding. Inclusion complex between 4-aminoazobenzene and cucurbit[7]uril has been investigated in aqueous solution by ultraviolet (UV)-spectroscopy, 1H NMR, and molecular simulations. 4-aminoazobenzene shows high affinity in acidic solutions while no association was detected in neutral solutions. The thermodynamic properties of complex formation are investigated using both UV spectroscopy and nuclear magnetic resonance (NMR) measurements. Our results highlight that the high binding constant between CB7 and 4AA (log K = 4.9) is the result of a large negative change in Δr H° (-19 kJ/mol) and a small positive change in TΔr S° (9 kJ/mol). The analysis of the experimental data lead to hypothesis on the structure of the complex. We have used molecular dynamics simulation to interpret experiments. Interestingly, the cis-trans isomerization of aminoazobenzene is considered. All the results are discussed and compared with those previously obtained with other host molecules.
Collapse
|
15
|
Jiao J, Maisonneuve S, Xie J. Synthesis and Azobenzene Isomerization Investigation of Photoswitchable Glycomacrocycles. J Org Chem 2022; 87:8534-8543. [PMID: 35729754 DOI: 10.1021/acs.joc.2c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Macrocyclic glycoazobenzenes, as an emerging class of photoswitchable chiral macrocyclic compounds, have shown interesting properties since their discovery in 2017. We have recently employed the azobenzene-ester-linked glycosyl donor-acceptor pairs to study the influence of photoisomerization on intramolecular glycosylation. To continue the investigation on the stereoselectivity aspect of glycosylation and also to enlarge the diversity of photoswitchable glycomacrocycles, we have chosen azobenzene-triazole linkers in the present study and shown that the stereoselectivity of the glycosylation is dependent on the linker length, the configuration of the azobenzene template, as well as the reaction concentration. We have optimized the reaction conditions to prepare in good yields new glycomacrocycles, which displayed excellent photochromic properties. The influence of glycosylation reagents and acidity on the stability of the Z-azobenzene substrates and cyclic glycoazobenzenes has also been investigated, demonstrating that isomerization of macrocyclic azobenzene can be tuned by photo-, thermo-, and acid stimulus.
Collapse
Affiliation(s)
- Jinbiao Jiao
- ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Stéphane Maisonneuve
- ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Juan Xie
- ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| |
Collapse
|
16
|
Lisowski J. Imine- and Amine-Type Macrocycles Derived from Chiral Diamines and Aromatic Dialdehydes. Molecules 2022; 27:molecules27134097. [PMID: 35807342 PMCID: PMC9267964 DOI: 10.3390/molecules27134097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
The condensation of aromatic dialdehydes with chiral diamines, such as 1,2-trans-diaminocyclohexane, leads to various enantiopure or meso-type macrocyclic Schiff bases, including [2 + 2], [3 + 3], [4 + 4], [6 + 6] and [8 + 8] condensation products. Unlike most cases of macrocycle synthesis, the [3 + 3] macrocycles of this type are sometimes obtained in high yields by direct condensation without a metal template. Macrocycles of other sizes from this family can often be selectively obtained in high yields by a suitable choice of metal template, solvent, or chirality of the building blocks. In particular, the application of a cadmium(II) template results in the expansion of the [2 + 2] macrocycles into giant [6 + 6] and [8 + 8] macrocycles. These imine macrocycles can be reduced to the corresponding macrocyclic amines which can act as hosts for the binding of multiple cations or multiple anions.
Collapse
Affiliation(s)
- Jerzy Lisowski
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| |
Collapse
|
17
|
Wang Y, Li B, Zhu J, Zhang W, Zheng B, Zhao W, Tang J, Yang X, Wu B. Light‐Triggered High‐Affinity Binding of Tetramethylammonium over Potassium Ions by [18]crown‐6 in a Tetrahedral Anion Cage. Angew Chem Int Ed Engl 2022; 61:e202201789. [DOI: 10.1002/anie.202201789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Boyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Jiajia Zhu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Wenyao Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Bo Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wei Zhao
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Juan Tang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Xiao‐Juan Yang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
18
|
Wang Y, Li B, Zhu J, Zhang W, Zheng B, Zhao W, Tang J, Yang X, Wu B. Light‐Triggered High‐Affinity Binding of Tetramethylammonium over Potassium Ions by [18]crown‐6 in a Tetrahedral Anion Cage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Boyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Jiajia Zhu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Wenyao Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Bo Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wei Zhao
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Juan Tang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Xiao‐Juan Yang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710069 China
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
19
|
Romi S, Fanetti S, Alabarse F, Mio AM, Haines J, Bini R. Towards custom built double core carbon nanothreads using stilbene and pseudo-stilbene type systems. NANOSCALE 2022; 14:4614-4625. [PMID: 35266485 DOI: 10.1039/d1nr08188h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Until recently, saturated carbon nanothreads were the missing tile in the world of low-dimension carbon nanomaterials. These one-dimensional fully saturated polymers possess superior mechanical properties by combining high tensile strength with flexibility and resilience. They can be obtained by compressing aromatic and heteroaromatic crystals above 15 GPa exploiting the anisotropic stress that can be achieved by the diamond anvil cell technique. Recently, double-core nanothreads were synthesized by compressing azobenzene crystals, achieving the remarkable result of preserving the azo group as a linker of the resulting double thread. Herein, we demonstrate the generality of these findings through the synthesis of double carbon nanothreads from trans stilbene and azobenzene-stilbene mixed crystals. Employment of Fourier transform infrared spectroscopy and synchrotron X-ray diffraction enabled a comprehensive characterization of the reactivity identifying threshold conditions, kinetics and structure-reaction relationship. In particular, the reaction is anticipated by a phase transition characterized by a sudden increase of the monoclinic angle and a collapse along the b axis direction. Large bidimensional crystalline areas extending several tens of nanometers are evidenced by transmission electron microscopy also confirming the monoclinic unit cell derived from X-ray diffraction data in which threads possessing the polymer 1 structure, as suggested by density functional theory calculations, are packed. The most exciting result of this study is the demonstration of viable synthesis of double nanothreads where the number and the nature of chromophoric groups linking the threads can be tuned by preparing starting crystals of desired composition, thanks to the isomorphism typical of the pseudo-stilbene molecules. This is extremely important in tailoring nanothreads with tunable optical properties and an adjustable band gap, also exploiting the possibility of introducing substituents in the phenyl groups.
Collapse
Affiliation(s)
- Sebastiano Romi
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Samuele Fanetti
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
- ICCOM-CNR, Istituto di Chimica dei Composti OrganoMetallici, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy.
| | - Frederico Alabarse
- ELETTRA, Elettra Sincrotrone Trieste S.C.p.A, in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Antonio M Mio
- IMM-CNR, Istituto per la Microelettronica e Microsistemi, VIII Strada 5 - Zona Industriale, 95121 Catania, Italy
| | - Julien Haines
- Institut Charles Gerhardt Montpellier, CNRS, Université de Montpellier, 34095 Montpellier, France
| | - Roberto Bini
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
- ICCOM-CNR, Istituto di Chimica dei Composti OrganoMetallici, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy.
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy.
| |
Collapse
|
20
|
Wagner-Wysiecka E, Szulc P, Luboch E, Chojnacki J, Sowiński P, Szwarc-Karabyka K. Products of Photo- and Thermochemical Rearrangement of 19-Membered di- tert-Butyl-Azoxybenzocrown. Molecules 2022; 27:1835. [PMID: 35335196 PMCID: PMC8955022 DOI: 10.3390/molecules27061835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
The preparation and characterization of products of the photochemical and thermochemical rearrangements of 19-membered azoxybenzocrowns with two, bulky, tert-butyl substituents in benzene rings in the para positions to oligooxyethylene fragments (meta positions to azoxy group, i.e., t-Bu-19-Azo-O have been presented. In photochemical rearrangement, two colored typical products were expected, i.e., 19-membered o-hydroxy-m,m'-di-tert-butyl-azobenzocrown (t-Bu-19-o-OH) and 19-membered p-hydroxy-m,m'-di-tert-butyl-azobenzocrown (t-Bu-19-p-OH). In experiments, two colored atypical macrocyclic derivatives, one 6-membered and one 5-membered ring, bearing an aldehyde group (t-Bu-19-al) or intramolecular ester group (t-Bu-20-ester), were obtained. Photochemical rearrangement led to one more macrocyclic product being isolated and identified: a 17-membered colorless compound, without an azo moiety, t-Bu-17-p-OH. The yield of the individual compounds was significantly influenced by the reaction conditions. Thermochemical rearrangement led to t-Bu-20-ester as the main product. The structures of the four crystalline products of the rearrangement-t-Bu-19-o-OH, t-Bu-19-p-OH, t-Bu-20-ester and t-Bu-17-p-OH-were determined by the X-ray method. Structures in solution of atypical derivatives (t-Bu-19-al and t-Bu-20-ester) and t-Bu-19-p-OH were defined using NMR spectroscopy. For the newly obtained hydroxyazobenzocrowns, the azo-phenol⇄quinone-hydrazone tautomeric equilibrium was investigated using spectroscopic methods. Complexation studies of alkali and alkaline earth metal cations were studied using UV-Vis absorption spectroscopy. 1H NMR spectroscopy was additionally used to study the cation recognition of metal cations. Cation binding studies in acetonitrile have shown high selectivity towards calcium over magnesium for t-Bu-19-o-OH.
Collapse
Affiliation(s)
- Ewa Wagner-Wysiecka
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland;
| | - Paulina Szulc
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland;
| | - Elżbieta Luboch
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland;
| | - Jarosław Chojnacki
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland;
| | - Paweł Sowiński
- Nuclear Magnetic Resonance Laboratory, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland; (P.S.); (K.S.-K.)
| | - Katarzyna Szwarc-Karabyka
- Nuclear Magnetic Resonance Laboratory, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland; (P.S.); (K.S.-K.)
| |
Collapse
|
21
|
Debanath E, Shil RK, Rabi S, Palit D, Dey BK, Roy TG. Synthesis, characterization, and antibacterial studies of some vanadium complexes with hexamethyl tetraazamacrocycles. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2047071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Eshita Debanath
- Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| | - Ratul Kumar Shil
- Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
- Department of Chemistry, Faculty of Engineering & Technology, Chittagong University of Engineering & Technology, Chattogram, Bangladesh
| | - Saswata Rabi
- Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
- Department of Chemistry, Faculty of Engineering & Technology, Chittagong University of Engineering & Technology, Chattogram, Bangladesh
| | - Debashis Palit
- Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| | - Benu Kumar Dey
- Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| | - Tapashi Ghosh Roy
- Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
22
|
Synthesis of azobenzene-containing macrocycles exhibiting unexpected fluorescence. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Rodríguez-Silva CN, Prokopczyk IM, Dos Santos JL. The Medicinal Chemistry of Chalcones as Anti-Mycobacterium tuberculosis Agents. Mini Rev Med Chem 2022; 22:2068-2080. [DOI: 10.2174/1389557522666220214093606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/29/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Tuberculosis (TB), a highly fatal infectious disease, is caused by Mycobacterium tuberculosis (Mtb) that has inflicted mankind for several centuries. In 2019, the staggering number of new cases reached 10 million resulting in 1.2 million deaths. The emergence of multidrug-resistance-Mycobacterium tuberculosis (MDR-TB) and extensively drug-resistant-Mycobacterium tuberculosis (XDR-TB) is a global concern that requires the search for novel, effective, and safer short-term therapies. Nowadays, among the few alternatives available to treat resistant-Mtb strains, the majority have limitations, which include drug-drug interactions, long-term treatment, and chronic induced toxicities. Therefore, it is mandatory to develop new anti-Mtb agents to achieve health policy goals to mitigate the disease by 2035. Among the several bioactive anti-Mtb compounds, chalcones have been described as the privileged scaffold useful for drug design. Overall, this review explores and analyzes 37 chalcones that exhibited anti-Mtb activity described in the literature up to April 2021 with minimum inhibitory concentration (MIC90) values inferior to 20 µM and selective index superior to 10. In addition, the correlation of some properties for most active compounds was evaluated, and the main targets for these compounds were discussed.
Collapse
Affiliation(s)
- Cristhian N. Rodríguez-Silva
- Universidad Nacional de Trujillo, Facultad de Farmacia y Bioquímica, Unidad de Posgrado en Farmacia y Bioquímica, Av. Juan Pablo II s/n. 13011. Trujillo-Perú
| | - Igor Muccilo Prokopczyk
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil
| | - Jean Leandro Dos Santos
- Universidad Nacional de Trujillo, Facultad de Farmacia y Bioquímica, Unidad de Posgrado en Farmacia y Bioquímica, Av. Juan Pablo II s/n. 13011. Trujillo-Perú
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil
| |
Collapse
|
24
|
Grajewski J. Recent Advances in the Synthesis and Applications of Nitrogen-Containing Macrocycles. Molecules 2022; 27:1004. [PMID: 35164269 PMCID: PMC8839354 DOI: 10.3390/molecules27031004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
Macrocyclic nitrogen-containing compounds are versatile molecules. Supramolecular, noncovalent interactions of these macrocycles with guest molecules enables them to act as catalysts, fluorescent sensors, chiral or nonchiral selectors, or receptors of small molecules. In the solid state, they often display a propensity to form inclusion compounds. All of these properties are usually closely connected with the presence of nitrogen atoms in the macrocyclic ring. As most of the reviews published so far on macrocycles were written from the viewpoint of functional groups, synthetic methods, or the structure, search methods for literature reports in terms of the physicochemical properties of these compounds may be unobvious. In this minireview, the emphasis was put on the synthesis and applications of nitrogen-containing macrocyclic compounds, as they differ from their acyclic analogs, and at the same time are the driving force for further research.
Collapse
Affiliation(s)
- Jakub Grajewski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
25
|
Niedbała P, Ceborska M, Mehmet M, Ignacak W, Jurczak J, Dąbrowa K. Anion Recognition by a Pincer-Type Host Constructed from Two Polyamide Macrocyclic Frameworks Jointed by a Photo-Addressable Azobenzene Switch. MATERIALS (BASEL, SWITZERLAND) 2022; 15:692. [PMID: 35057408 PMCID: PMC8777895 DOI: 10.3390/ma15020692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 12/10/2022]
Abstract
A sterically crowded light-responsive host 1 was synthetized with a 93% yield by applying a post-functionalization protocol utilizing the double amidation of 4,4'-azodibenzoyl dichloride with a readily available 26-membered macrocyclic amine. X-ray structures of two hydrates of trans-1 demonstrate a very different alignment of the azobenzene linkage, which is involved in T-shape or parallel-displaced π⋯π stacking interactions with the pyridine-2,6-dicarboxamide moieties from the macrocyclic backbone. Despite the rigidity of the macrocyclic framework, which generates a large steric hindrance around the azobenzene chromophore, the host 1 retains the ability to undergo a reversible cis⟷trans isomerization upon irradiation with UVA (368 nm) and blue (410 nm) light. Moreover, thermal cis→trans back-isomerization (ΔG0 = 106.5 kJ∙mol-1, t½ = 141 h) is markedly slowed down as compared to the non-macrocyclic analog. 1H NMR titration experiments in DMSO-d6/0.5% water solution reveal that trans-1 exhibits a strong preference for dihydrogenphosphate (H2PO4-) over other anions (Cl-, MeCO2-, and PhCO2-), whereas the photogenerated metastable cis-1 shows lower affinity for the H2PO4- anion.
Collapse
Affiliation(s)
- Patryk Niedbała
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; (P.N.); (M.M.); (W.I.)
| | - Magdalena Ceborska
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland;
| | - Mart Mehmet
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; (P.N.); (M.M.); (W.I.)
| | - Wiktor Ignacak
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; (P.N.); (M.M.); (W.I.)
| | - Janusz Jurczak
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; (P.N.); (M.M.); (W.I.)
| | - Kajetan Dąbrowa
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; (P.N.); (M.M.); (W.I.)
| |
Collapse
|
26
|
Todorova SE, Rusew RI, Petkova ZS, Shivachev BL, Nikolova RP, Kurteva VB. Acylpyrazolones possessing a heterocyclic moiety in the acyl fragment: intramolecular vs. intermolecular zwitterionic structures. NEW J CHEM 2022. [DOI: 10.1039/d1nj05458a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of acylpyrazolones possessing a methylene bridged heterocyclic unit in the acyl fragment are synthesized and characterized in solution and the solid state.
Collapse
Affiliation(s)
- Stanislava E. Todorova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia 1113, Bulgaria
| | - Rusi I. Rusew
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 107, Sofia 1113, Bulgaria
| | - Zhanina S. Petkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia 1113, Bulgaria
| | - Boris L. Shivachev
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 107, Sofia 1113, Bulgaria
| | - Rositsa P. Nikolova
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 107, Sofia 1113, Bulgaria
| | - Vanya B. Kurteva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia 1113, Bulgaria
| |
Collapse
|
27
|
Galiński B, Luboch E, Chojnacki J, Wagner-Wysiecka E. Novel Diazocrowns with Pyrrole Residue as Lead(II)Colorimetric Probes. MATERIALS 2021; 14:ma14237239. [PMID: 34885394 PMCID: PMC8658487 DOI: 10.3390/ma14237239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
Novel 18- and 23-membered diazomacrocycles were obtained with satisfactory yields by diazocoupling of aromatic diamines with pyrrole in reactions carried under high dilution conditions. X-ray structure of macrocycle bearing five carbon atoms linkage was determined and described. Compounds were characterized as chromogenic heavy metal ions receptors. Selective color and spectral response for lead(II) was found in acetonitrile and its mixture with water. Complexation properties of newly obtained macrocycles with a hydrocarbon chain were compared with the properties of their oligoether analogs. The influence of the introduction of hydrocarbon residue as a part of macrocycle on the lead(II) binding was discussed. Selective and sensitive colorimetric probe for lead(II) in aqueous acetonitrile with detection limit 56.1 μg/L was proposed.
Collapse
Affiliation(s)
- Błażej Galiński
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland; (B.G.); (E.L.)
| | - Elżbieta Luboch
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland; (B.G.); (E.L.)
| | - Jarosław Chojnacki
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland;
| | - Ewa Wagner-Wysiecka
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland; (B.G.); (E.L.)
- Correspondence:
| |
Collapse
|
28
|
|
29
|
Łukasik N, Hemine K, Anusiewicz I, Skurski P, Paluszkiewicz E. Photoresponsive Amide-Based Derivatives of Azobenzene-4,4'-Dicarboxylic Acid-Experimental and Theoretical Studies. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3995. [PMID: 34300906 PMCID: PMC8306546 DOI: 10.3390/ma14143995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
Azobenzene derivatives are one of the most important molecular switches for biological and material science applications. Although these systems represent a well-known group of compounds, there remains a need to identify the factors influencing their photochemical properties in order to design azobenzene-based technologies in a rational way. In this contribution, we describe the synthesis and characterization of two novel amides (L1 and L2) containing photoresponsive azobenzene units. The photochemical properties of the obtained compounds were investigated in DMSO by UV-Vis spectrophotometry, as well as 1H NMR spectroscopy, and the obtained results were rationalized via Density Functional Theory (DFT) methods. After irradiation with UV light, both amides underwent trans to cis isomerization, yielding 40% and 22% of the cis isomer of L1 and L2 amides, respectively. Quantum yields of this process were determined as 6.19% and 2.79% for L1 and L2, respectively. The reverse reaction (i.e., cis to trans isomerization) could be achieved after thermal or visible light activation. The analysis of the theoretically determined equilibrium structure of the transition-state connecting cis and trans isomers on the reaction path indicated that the trans-cis interconversion is pursued via the flipping of the substituent, rather than its rotation around the N=N bond. The kinetics of thermal back-reaction and the effect of the presence of the selected ions on the half-life of the cis form were also investigated and discussed. In the case of L1, the presence of fluoride ions sped the thermal relaxation up, whereas the half-life time of cis-L2 was extended in the presence of tested ions.
Collapse
Affiliation(s)
- Natalia Łukasik
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Koleta Hemine
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Iwona Anusiewicz
- Laboratory of Quantum Chemistry, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland; (I.A.); (P.S.)
| | - Piotr Skurski
- Laboratory of Quantum Chemistry, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland; (I.A.); (P.S.)
| | - Ewa Paluszkiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland;
| |
Collapse
|
30
|
Sarkar S, Sarkar P, Ghosh P. Heteroditopic Macrobicyclic Molecular Vessels for Single Step Aerial Oxidative Transformation of Primary Alcohol Appended Cross Azobenzenes. J Org Chem 2021; 86:6648-6664. [PMID: 33908241 DOI: 10.1021/acs.joc.1c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of oxy-ether tris-amino heteroditopic macrobicycles (L1-L4) with various cavity dimensions have been synthesized and explored for their Cu(II) catalyzed selective single step aerial oxidative cross-coupling of primary alcohol based anilines with several aromatic amines toward the formation of primary alcohol appended cross azobenzenes (POCABs). The beauty of this transformation is that the easily oxidizable benzyl/primary alcohol group remains unhampered during the course of this oxidation due to the protective oxy-ether pocket of this series of macrobicyclic vessels. Various dimensionalities of the molecular vessels have shown specific size complementary selection for substrates toward efficient syntheses of regioselective POCAB products. To establish the requirement of the three-dimensional cavity based additives, a particular catalytic reaction has been examined in the presence of macrobicycles (L2 and L3) versus macrocycles (MC1 and MC2) and tripodal acyclic (AC1 and AC2) analogous components, respectively. Subsequently, L1-L4 have been extensively utilized toward the syntheses of as many as 44 POCABs and are characterized by different spectroscopic techniques and single crystal X-ray diffraction studies.
Collapse
Affiliation(s)
- Sayan Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Piyali Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
31
|
Romi S, Fanetti S, Alabarse F, Mio AM, Bini R. Synthesis of double core chromophore-functionalized nanothreads by compressing azobenzene in a diamond anvil cell. Chem Sci 2021; 12:7048-7057. [PMID: 34123332 PMCID: PMC8153222 DOI: 10.1039/d0sc06968j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Carbon nanothreads are likely the most attracting new materials produced under high pressure conditions. Their synthesis is achieved by compressing crystals of different small aromatic molecules, while also exploiting the applied anisotropic stress to favor nontopochemical paths. The threads are nanometric hollow structures of saturated carbon atoms, reminiscent of the starting aromatic molecule, gathered in micron sized bundles. The examples collected so far suggest that their formation can be a general phenomenon, thus enabling the design of functionalities and properties by suitably choosing the starting monomer on the basis of its chemical properties and crystal arrangement. The presence of heteroatoms or unsaturation within the thread is appealing for improving the processability and tuning the electronic properties. Suitable simple chromophores can fulfill these requirements and their controlled insertion along the thread would represent a considerable step forward in tailoring the optical and electronic properties of these mechanically extraordinary materials. Here, we report the synthesis and extensive characterization of double core nanothreads linked by azo groups. This is achieved by compressing azobenzene in a diamond anvil cell, the archetype of a wide class of dyes, and represents a fundamental step in the realization of nanothreads with tailored photochemical and photophysical properties. One-step high-pressure synthesis of 2D crystalline double nanothreads linked by azo groups.![]()
Collapse
Affiliation(s)
- Sebastiano Romi
- LENS, European Laboratory for Non-linear Spectroscopy Via N. Carrara 1 I-50019 Sesto Fiorentino Firenze Italy +390554572489 +390554572436
| | - Samuele Fanetti
- LENS, European Laboratory for Non-linear Spectroscopy Via N. Carrara 1 I-50019 Sesto Fiorentino Firenze Italy +390554572489 +390554572436.,ICCOM-CNR, Istituto di Chimica dei Composti OrganoMetallici Via Madonna del Piano 10 I-50019 Sesto Fiorentino Firenze Italy
| | - Frederico Alabarse
- ELETTRA, Elettra Sincrotrone Trieste S.C.p.A in AREA Science Park 34149 Basovizza Trieste Italy
| | - Antonio M Mio
- IMM-CNR, Istituto per la Microelettronica e Microsistemi VIII Strada 5 - Zona Industriale 95121 Catania Italy
| | - Roberto Bini
- LENS, European Laboratory for Non-linear Spectroscopy Via N. Carrara 1 I-50019 Sesto Fiorentino Firenze Italy +390554572489 +390554572436.,ICCOM-CNR, Istituto di Chimica dei Composti OrganoMetallici Via Madonna del Piano 10 I-50019 Sesto Fiorentino Firenze Italy.,Dipartimento di Chimica "Ugo Schiff", Università di Firenze Via della Lastruccia 3 I-50019 Sesto Fiorentino Italy
| |
Collapse
|
32
|
Sokołowska P, Dąbrowa K, Jarosz S. Visible-Light Responsive Sucrose-Containing Macrocyclic Host for Cations. Org Lett 2021; 23:2687-2692. [PMID: 33729804 PMCID: PMC8041374 DOI: 10.1021/acs.orglett.1c00590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chiral photoresponsive host 1 was prepared by a high-yield Cs2CO3-templated macrocyclization. Trans-1 transforms into long-lived cis-1 (25 days) upon irradiation with green light, and the backward transformation is triggered by blue light. Both isomers prefer potassium among alkali metal cations, and cis-1 binds cations stronger than trans-1 (Kcis/Ktrans ≤ 4.1). 1H NMR titration experiments as well as density functional theory studies reveal that sucrose ring oxygen residues and azobenzene nitrogen atoms in 1 contribute to cation coordination.
Collapse
Affiliation(s)
- Patrycja Sokołowska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Kajetan Dąbrowa
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Sławomir Jarosz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
33
|
Wagner-Wysiecka E, Szulc P, Luboch E, Chojnacki J, Szwarc-Karabyka K, Łukasik N, Murawski M, Kosno M. Photochemical Rearrangement of a 19-Membered Azoxybenzocrown: Products and their Properties. Chempluschem 2021; 85:2067-2083. [PMID: 32909681 DOI: 10.1002/cplu.202000474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/13/2020] [Indexed: 11/07/2022]
Abstract
The preparation and characterization of products of the chemical and photochemical rearrangements of a 19-membered o,o'-azoxybenzocrown are presented. In photochemical rearrangement, besides the expected product i. e. 19-membered o-hydroxy-o,o'-azobenzocrown (19-o-OH) obtained under defined conditions with 75 % yield, also other macrocyclic products were isolated and identified, namely: 19-membered p-hydroxy-o,o'-azobenzocrown (19-p-OH), 21-membered o'-hydroxy-o,p'-azobenzocrown (21-o'-OH) and 19-membered macrocycle containing a 5-membered ring bearing an aldehyde group (19-al). The structures of two atypical products of the photochemical rearrangement - 21-o'-OH and 19-al - were determined in the solid state by X-ray analysis and in solution using NMR spectroscopy. Tautomeric equilibrium of the formed hydroxyazobenzocrowns and its change depending on acidity/basicity of the environment and alkali and alkaline earth metal cations complexation were studied using UV-Vis spectrophotometry, spectrofluorimetry and 1 H NMR spectroscopy.
Collapse
Affiliation(s)
- Ewa Wagner-Wysiecka
- Department of Chemistry and Technology of Functional Materials Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233, Gdańsk, Poland
| | - Paulina Szulc
- Department of Chemistry and Technology of Functional Materials Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233, Gdańsk, Poland
| | - Elżbieta Luboch
- Department of Chemistry and Technology of Functional Materials Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233, Gdańsk, Poland
| | - Jarosław Chojnacki
- Department of Inorganic Chemistry Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233, Gdańsk, Poland
| | - Katarzyna Szwarc-Karabyka
- Nuclear Magnetic Resonance Laboratory Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233, Gdańsk, Poland
| | - Natalia Łukasik
- Department of Chemistry and Technology of Functional Materials Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233, Gdańsk, Poland
| | - Miłosz Murawski
- Department of Chemistry and Technology of Functional Materials Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233, Gdańsk, Poland.,Present address: Department of Physical Chemistry Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233, Gdańsk, Poland
| | - Michał Kosno
- Department of Chemistry and Technology of Functional Materials Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233, Gdańsk, Poland.,Present address: Department of Pharmaceutical Technology and Biochemistry Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
34
|
Migulin D, Vysochinskaya Y, Buzin M, Bakirov A, Cherkaev G, Shchegolikhina O. Stereoregular hybrid azobenzene-cyclosiloxanes with photoinduced reversible solid to liquid transition properties. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Kondo M, Nakamura K, Krishnan CG, Takizawa S, Abe T, Sasai H. Photoswitchable Chiral Phase Transfer Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00057] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Masaru Kondo
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Kento Nakamura
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Chandu G. Krishnan
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Shinobu Takizawa
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Tsukasa Abe
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Hiroaki Sasai
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| |
Collapse
|
36
|
Vela S, Scheidegger A, Fabregat R, Corminboeuf C. Tuning the Thermal Stability and Photoisomerization of Azoheteroarenes through Macrocycle Strain*. Chemistry 2021; 27:419-426. [PMID: 32991023 PMCID: PMC7839710 DOI: 10.1002/chem.202003926] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/27/2020] [Indexed: 11/24/2022]
Abstract
Azobenzene and its derivatives are one of the most widespread molecular scaffolds used in a range of modern applications, as well as in fundamental research. After photoexcitation, azo-based photoswitches revert back to the most stable isomer on a timescale ( t 1 / 2 ) that determines the range of potential applications. Attempts to bring t 1 / 2 to extreme values prompted the development of azobenzene and azoheteroarene derivatives that either rebalance the E- and Z-isomer stabilities, or exploit unconventional thermal isomerization mechanisms. In the former case, one successful strategy has been the creation of macrocycle strain, which tends to impact the E/Z stability asymmetrically, and thus significantly modifyt 1 / 2 . On the bright side, bridged derivatives have shown an improved optical switching owing to the higher quantum yields and absence of degradation. However, in most (if not all) cases, bridged derivatives display a reversed thermal stability (more stable Z-isomer), and smaller t 1 / 2 than the acyclic counterparts, which restricts their potential interest to applications requiring a fast forward and backwards switch. In this paper, the impact of alkyl bridges on the thermal stability of phenyl-azoheteroarenes is investigated by using computational methods, and it is revealed that it is indeed possible to combine such improved photoswitching characteristics while preserving the regular thermal stability (more stable E-isomer), and increased t 1 / 2 values under the appropriate connectivity and bridge length.
Collapse
Affiliation(s)
- Sergi Vela
- Institute of Chemical Sciences and EngineeringLaboratory for Computational Molecular DesignÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Alan Scheidegger
- Institute of Chemical Sciences and EngineeringLaboratory for Computational Molecular DesignÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Raimon Fabregat
- Institute of Chemical Sciences and EngineeringLaboratory for Computational Molecular DesignÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Clémence Corminboeuf
- Institute of Chemical Sciences and EngineeringLaboratory for Computational Molecular DesignÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| |
Collapse
|
37
|
Yu J, Qi D, Li J. Design, synthesis and applications of responsive macrocycles. Commun Chem 2020; 3:189. [PMID: 36703444 PMCID: PMC9814784 DOI: 10.1038/s42004-020-00438-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023] Open
Abstract
Inspired by the lock and key principle, the development of supramolecular macrocyclic chemistry has promoted the prosperous growth of host-guest chemistry. The updated induced-fit and conformation selection model spurred the emerging research on responsive macrocycles (RMs). This review introduces RMs, covering their design, synthesis and applications. It gives readers insight into the dynamic control of macrocyclic molecules and the exploration of materials with desired functions.
Collapse
Affiliation(s)
- Jingjing Yu
- grid.1374.10000 0001 2097 1371MediCity Research Laboratory, University of Turku, Tykistökatu 6, 20520 Turku, Finland
| | - Dawei Qi
- grid.1374.10000 0001 2097 1371MediCity Research Laboratory, University of Turku, Tykistökatu 6, 20520 Turku, Finland
| | - Jianwei Li
- grid.1374.10000 0001 2097 1371MediCity Research Laboratory, University of Turku, Tykistökatu 6, 20520 Turku, Finland ,grid.428986.90000 0001 0373 6302Hainan Provincial Key Lab of Fine Chem, Key laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan University, Haikou, 570228 China
| |
Collapse
|
38
|
Yeoh YQ, Horsley JR, Yu J, Polyak SW, Jovcevski B, Abell AD. Short Photoswitchable Antibacterial Peptides. ChemMedChem 2020; 15:1505-1508. [DOI: 10.1002/cmdc.202000280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Yuan Qi Yeoh
- Institute of Photonics and Advanced Sensing (IPAS) School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - John R. Horsley
- Institute of Photonics and Advanced Sensing (IPAS) School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Jingxian Yu
- Institute of Photonics and Advanced Sensing (IPAS) School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Steven W. Polyak
- Department of Molecular and Cellular Biology The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Present address: UniSA: Clinical and Health Sciences University of South Australia North Terrace Adelaide SA 5000 Australia
| | - Blagojce Jovcevski
- Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Andrew D. Abell
- Institute of Photonics and Advanced Sensing (IPAS) School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| |
Collapse
|
39
|
Khayer K, Haque T. Density Functional Theory Calculation on the Structural, Electronic, and Optical Properties of Fluorene-Based Azo Compounds. ACS OMEGA 2020; 5:4507-4531. [PMID: 32175498 PMCID: PMC7066559 DOI: 10.1021/acsomega.9b03839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/19/2020] [Indexed: 06/02/2023]
Abstract
In the present work, a theoretical study was carried out to study the molecular structure, harmonic vibrational frequencies, normal force field calculations, and Raman scattering activities for fluorene π-conjugation spacer containing azo-based dye named trans- and cis-bis(9H-fluoren-2-yl)diazene (AzoFL) at density functional theory using B3LYP (Becke-3-Lee-Yang-Parr) functional and 6-31+G(d,p) basis set. The theoretical calculations have also been performed with fluorene and the trans- and cis-isomers of diazene, difluorodiazene by the same method DFT-B3LYP/6-31+G(d,p) and basis set. The present DFT calculation shows that the trans-AzoFL is more stable than the cis-AzoFL by 16.33 kcal/mol. We also report the results of new assignments of vibrational frequencies obtained on the basis of the present calculations. Time-dependent DFT (TD-DFT) and ZIndo calculations have been performed to study the UV-vis absorption behavior and frontier molecular orbitals for the above-mentioned compounds. The UV-vis spectrum from TD-DFT calculation shows the π-π* transition bands at λmax 423.53 nm (εmax 6.0 × 104 M-1 cm-1) and at λmax 359.45 nm (εmax 1.7 × 104 M-1 cm-1), respectively, for trans- and cis-AzoFL. Compared to parent trans-diazene (λmax 178.97 nm), a significant variation to longer wavelength (∼245 nm) is observed due to the incorporation of the fluorene (FL) ring into the -N=N- backbone. The co-planarity of the two FL rings with the longer N=N bond length compared to the unsubstituted parent diazene indicates the effective red shift due to the extended π-conjugation in trans-AzoFL. The nonplanarity of cis-AzoFL (48.1° tilted about the C-N bond relative to the planar N=N-C bond) reflects its ∼64 nm blue shift compared to that of trans-counterpart.
Collapse
Affiliation(s)
- Khurshida Khayer
- Department of Chemistry, Jahangirnagar
University, Savar, Dhaka 1342, Bangladesh
| | - Tahmina Haque
- Department of Chemistry, Jahangirnagar
University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
40
|
Łukasik N, Chojnacki J, Luboch E, Okuniewski A, Wagner-Wysiecka E. Photoresponsive, amide-based derivative of embonic acid for anion recognition. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Tseng C, Wen C, Huang D, Lai C, Chen S, Hu Q, Chen X, Xu X, Zhang S, Tao Y, Zhang Z. Synergy of Ionic and Dipolar Effects by Molecular Design for pH Sensing beyond the Nernstian Limit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901001. [PMID: 31993278 PMCID: PMC6974946 DOI: 10.1002/advs.201901001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Knowledge of interfacial interactions between analytes and functionalized sensor surfaces, from where the signal originates, is key to the development and application of electronic sensors. The present work explores the tunability of pH sensitivity by the synergy of surface charge and molecular dipole moment induced by interfacial proton interactions. This synergy is demonstrated on a silicon-nanoribbon field-effect transistor (SiNR-FET) by functionalizing the sensor surface with properly designed chromophore molecules. The chromophore molecules can interact with protons and lead to appreciable changes in interface dipole moment as well as in surface charge state. In addition, the dipole moment can be tuned not only by the substituent on the chromophore but also by the anion in the electrolyte interacting with the protonated chromophore. By designing surface molecules to enhance the surface dipole moment upon protonation, an above-Nernstian pH sensitivity is achieved on the SiNR-FET sensor. This finding may bring an innovative strategy for tailoring the sensitivity of the SiNR-FET-based pH sensor toward a wide range of applications.
Collapse
Affiliation(s)
- Chiao‐Wei Tseng
- Division of Solid‐State ElectronicsThe Ångström LaboratoryUppsala UniversitySE‐751 21UppsalaSweden
| | - Chenyu Wen
- Division of Solid‐State ElectronicsThe Ångström LaboratoryUppsala UniversitySE‐751 21UppsalaSweden
| | | | - Chin‐Hung Lai
- Department of Medical Applied ChemistryChung Shan Medical UniversityTaichung40201Taiwan
| | - Si Chen
- Division of Solid‐State ElectronicsThe Ångström LaboratoryUppsala UniversitySE‐751 21UppsalaSweden
| | - Qitao Hu
- Division of Solid‐State ElectronicsThe Ångström LaboratoryUppsala UniversitySE‐751 21UppsalaSweden
| | - Xi Chen
- Division of Solid‐State ElectronicsThe Ångström LaboratoryUppsala UniversitySE‐751 21UppsalaSweden
| | - Xingxing Xu
- Division of Solid‐State ElectronicsThe Ångström LaboratoryUppsala UniversitySE‐751 21UppsalaSweden
| | - Shi‐Li Zhang
- Division of Solid‐State ElectronicsThe Ångström LaboratoryUppsala UniversitySE‐751 21UppsalaSweden
| | - Yu‐Tai Tao
- Institute of ChemistryAcademia SinicaTaipei115Taiwan
| | - Zhen Zhang
- Division of Solid‐State ElectronicsThe Ångström LaboratoryUppsala UniversitySE‐751 21UppsalaSweden
| |
Collapse
|
42
|
Berry J, Despras G, Lindhorst TK. A compatibility study on the glycosylation of 4,4′-dihydroxyazobenzene. RSC Adv 2020; 10:17432-17437. [PMID: 35515580 PMCID: PMC9053478 DOI: 10.1039/d0ra02435j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/22/2020] [Indexed: 12/25/2022] Open
Abstract
Photoresponsive glycoconjugates based on the azobenzene photoswitch are valuable molecules which can be used as tools for the investigation of carbohydrate–protein interactions or as precursors of shape-switchable molecular architectures, for example. To access such compounds, glycosylation of 4,4′-dihydroxyazobenzene (DHAB) is a critical step, frequently giving heterogeneous results because DHAB is a challenging glycosyl acceptor. Therefore, DHAB glucosylation was studied using nine different glycosyl donors, and reaction conditions were systematically varied in order to find a reliable procedure, especially towards the preparation of azobenzene bis-glucosides. Particular emphasis was put on glucosyl donors which were differentiated at the primary 6-position (N3, OAc) for further functionalisation. The present study allowed us to identify suitable glycosyl donors and reaction conditions matching with DHAB, affording the bis-glycosylated products in fair yields and good stereocontrol. The glycosylation of 4,4′-dihydroxyazobenzene was investigated to identify suitable conditions providing access to valuable photoswitchable glycoconjugates.![]()
Collapse
Affiliation(s)
- Jonathan Berry
- Otto Diels Institute of Organic Chemistry
- Christiana Albertina University of Kiel
- 24118 Kiel
- Germany
| | - Guillaume Despras
- Otto Diels Institute of Organic Chemistry
- Christiana Albertina University of Kiel
- 24118 Kiel
- Germany
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic Chemistry
- Christiana Albertina University of Kiel
- 24118 Kiel
- Germany
| |
Collapse
|
43
|
A tetrachloroazobenzene based macrocycle featuring with red-light regulated encapsulation for aryl dianionic guests. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
44
|
Kalachyova Y, Guselnikova O, Hnatowicz V, Postnikov P, Švorčík V, Lyutakov O. Flexible Conductive Polymer Film Grafted with Azo-Moieties and Patterned by Light Illumination with Anisotropic Conductivity. Polymers (Basel) 2019; 11:E1856. [PMID: 31717943 PMCID: PMC6918303 DOI: 10.3390/polym11111856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/02/2019] [Accepted: 11/07/2019] [Indexed: 01/22/2023] Open
Abstract
In this work, we present the method for the creation of an anisotropic electric pattern on thin poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) films through PSS grafting by azo-containing moieties followed by light-induced polymers redistribution. Thin PEDOT:PSS films were deposited on the flexible and biodegradable polylactic acid (PLLA) substrates. The light-sensitive azo-groups were grafted to PSS using the diazonium chemistry followed by annealing in methanol. Local illumination of azo-grafted PEDOT:PSS films through the lithographic mask led to the conversion of azo-moieties in Z-configuration and further creation of the lateral gradient of azo-isomers along the film surface. The concentration gradient led to the migration of PSS away from the illuminated area, increasing the PEDOT chains' concentration and the corresponding increase of local electrical conductivity in the illuminated place. Utilization of mask with linear pattern results in the appearance of conductive PEDOT-rich and non-conductive PSS-rich lines on the film surface, and final, lateral anisotropy of electric properties. Our work gives an optical lithography-based alternative to common methods for the creation of anisotropic electric properties, based on the spatial confinement of conductive polymer structures or their mechanical strains.
Collapse
Affiliation(s)
- Yevgeniya Kalachyova
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic; (Y.K.); (P.P.); (V.Š.)
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634049 Tomsk, Russian Federation
| | - Olga Guselnikova
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic; (Y.K.); (P.P.); (V.Š.)
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634049 Tomsk, Russian Federation
| | - Vladimir Hnatowicz
- Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 25068 Rez, Czech Republic;
| | - Pavel Postnikov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic; (Y.K.); (P.P.); (V.Š.)
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634049 Tomsk, Russian Federation
| | - Vaclav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic; (Y.K.); (P.P.); (V.Š.)
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic; (Y.K.); (P.P.); (V.Š.)
| |
Collapse
|
45
|
Ye Z, Yang Z, Wang L, Chen L, Cai Y, Deng P, Feng W, Li X, Yuan L. A Dynamic Hydrogen‐Bonded Azo‐Macrocycle for Precisely Photo‐Controlled Molecular Encapsulation and Release. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zecong Ye
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| | - Zhiyao Yang
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| | - Lei Wang
- Department of ChemistryUniversity of South Florida Tampa FL 33620 USA
| | - Lixi Chen
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| | - Yimin Cai
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| | - Pengchi Deng
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| | - Wen Feng
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| | - Xiaopeng Li
- Department of ChemistryUniversity of South Florida Tampa FL 33620 USA
| | - Lihua Yuan
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| |
Collapse
|
46
|
Ye Z, Yang Z, Wang L, Chen L, Cai Y, Deng P, Feng W, Li X, Yuan L. A Dynamic Hydrogen-Bonded Azo-Macrocycle for Precisely Photo-Controlled Molecular Encapsulation and Release. Angew Chem Int Ed Engl 2019; 58:12519-12523. [PMID: 31269315 DOI: 10.1002/anie.201906912] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 02/06/2023]
Abstract
A light-responsive system constructed from hydrogen-bonded azo-macrocycles demonstrates precisely controlled propensity in molecular encapsulation and release process. A significant decrease in the size of the cavity is observed in the course of the E→Z photoisomerization based on the results from DFT calculations and traveling wave ion mobility mass spectrometry. These macrocyclic hosts exhibit a rare 2:1 host-guest stoichiometry and guest-dependent slow or fast exchange on the NMR timescale. With the slow host-guest exchange and switchable shape change of the cavity, quantitative release and capture of bipyridinium guests is achieved with the maximum release of 68 %. This work underscores the importance of slow host-guest exchange on realizing accurate release of organic cations in a stepwise manner under light irradiation. The light-responsive system established here could advance further design of novel photoresponsive molecular switches and mechanically interlocked molecules.
Collapse
Affiliation(s)
- Zecong Ye
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Zhiyao Yang
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Lei Wang
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Lixi Chen
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Yimin Cai
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Pengchi Deng
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Wen Feng
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Lihua Yuan
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
47
|
Deneva V, Antonov L. Attaching tweezers like ionophore to a proton crane: theoretical design of new tautomeric sensors. Mol Phys 2019. [DOI: 10.1080/00268976.2018.1562127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Vera Deneva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Liudmil Antonov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
48
|
Zhang TS, Li ZW, Fang Q, Barbatti M, Fang WH, Cui G. Stereoselective Excited-State Isomerization and Decay Paths in cis-Cyclobiazobenzene. J Phys Chem A 2019; 123:6144-6151. [DOI: 10.1021/acs.jpca.9b04372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Teng-Shuo Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zi-Wen Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | | | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
49
|
Chi X, Cen W, Queenan JA, Long L, Lynch VM, Khashab NM, Sessler JL. Azobenzene-Bridged Expanded "Texas-sized" Box: A Dual-Responsive Receptor for Aryl Dianion Encapsulation. J Am Chem Soc 2019; 141:6468-6472. [PMID: 30957995 DOI: 10.1021/jacs.9b01241] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report an expanded "Texas-sized" molecular box (AzoTxSB) that incorporates photoresponsive azobenzene bridging subunits and anion recognition motifs. The shape of this box can be switched through light induced E ↔ Z photoisomerization of the constituent azobenzenes. This allows various anionic substrates to be bound and released by using different forms of the box. Control can also be achieved using other environmental stimuli, such as pH and anion competition.
Collapse
Affiliation(s)
- Xiaodong Chi
- Department of Chemistry , The University of Texas at Austin , 105 E. 24th Street, Stop A5300 , Austin , Texas 78712-1224 , United States
| | - Wanglai Cen
- Department of Chemistry , The University of Texas at Austin , 105 E. 24th Street, Stop A5300 , Austin , Texas 78712-1224 , United States.,Institute of New Energy and Low Carbon Technology, Sichuan University , Chengdu 610207 , People's Republic of China
| | - Jack A Queenan
- Department of Chemistry , The University of Texas at Austin , 105 E. 24th Street, Stop A5300 , Austin , Texas 78712-1224 , United States
| | - Lingliang Long
- School of Chemistry and Chemical Engineering , Jiangsu University , Zhenjiang , Jiangsu 212013 , People's Republic of China
| | - Vincent M Lynch
- Department of Chemistry , The University of Texas at Austin , 105 E. 24th Street, Stop A5300 , Austin , Texas 78712-1224 , United States
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology , Thuwal 23955 , Saudi Arabia
| | - Jonathan L Sessler
- Department of Chemistry , The University of Texas at Austin , 105 E. 24th Street, Stop A5300 , Austin , Texas 78712-1224 , United States.,Center for Supramolecular Chemistry and Catalysis, Shanghai University , Shanghai 200444 , People's Republic of China
| |
Collapse
|
50
|
Bhaskar R, Sarveswari S. Colorimetric sensor for real-time detection of cyanide ion in water and food samples. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|