1
|
Complementarity and Preorganisation in the Assembly of Heterometallic–Organic Cages via the Metalloligand Approach—Recent Advances. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The design of new metallocage polyhedra towards pre-determined structures can offer both practical as well as intellectual challenges. In this mini-review we discuss a selection of recent examples in which the use of the metalloligand approach has been employed to overcome such challenges. An attractive feature of this approach is its stepwise nature that lends itself to the design and rational synthesis of heterometallic metal–organic cages, with the latter often associated with enhanced functionality.
Collapse
|
2
|
Siddique RG, Arachchige KSA, Al-Fayaad HA, McMurtrie JC, Clegg JK. Sterics and metal-ion radius control the self-assembly of [M 2L 3] helicates. Dalton Trans 2022; 51:12704-12708. [PMID: 35943089 DOI: 10.1039/d2dt02241a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interplay of many factors influences the outcomes of self-assembly reactions. Using an acetylene-appended quaterpyridine ligand we show that both the size of the metal ion and the presence of steric repulsion between the acetylene groups result in the exclusive formation of [M2L3] helicates rather than a helicate/tetrahedron equilibrium.
Collapse
Affiliation(s)
- Rashid G Siddique
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
| | - Kasun S A Arachchige
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
| | - Hydar A Al-Fayaad
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
| | - John C McMurtrie
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
| |
Collapse
|
3
|
Bala S, Akhtar S, Liu JL, Huang GZ, Wu SG, De A, Das KS, Saha S, Tong ML, Mondal R. Fascinating interlocked triacontanuclear giant nanocages. Chem Commun (Camb) 2021; 57:11177-11180. [PMID: 34617535 DOI: 10.1039/d1cc02990h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein three air, thermal and solvent stable interlocked triacontanuclear giant nanocages, generated using a node and spacer concept. Interestingly, the crystal structures of the cages are not only nano-dimensional but also exist in the nano-dimension range, which was corroborated with microscopic images. The combination of microscopic and crystallographic data, in effect, led us to a unique advantageous situation of generating nanomaterials with hard-to-come-by structural information at the molecular level.
Collapse
Affiliation(s)
- Sukhen Bala
- School of Chemical Science Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India. .,Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Sohel Akhtar
- School of Chemical Science Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| | - Jun-Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Guo-Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Avik De
- School of Chemical Science Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| | - Krishna Sundar Das
- School of Chemical Science Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| | - Sayan Saha
- School of Chemical Science Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Raju Mondal
- School of Chemical Science Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Kolkata-700032, West Bengal, India.
| |
Collapse
|
4
|
Xue S, Guo Y, Garcia Y. Spin crossover crystalline materials engineered via single-crystal-to-single-crystal transformations. CrystEngComm 2021. [DOI: 10.1039/d1ce00234a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This highlight illustrates the latest crystalline materials engineered via SCSC transformations, with emphasis on the onset and progress of spin crossover in a crystal control.
Collapse
Affiliation(s)
- Shufang Xue
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yunnan Guo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Li F, Lindoy LF. Metalloligand Strategies for Assembling Heteronuclear Nanocages – Recent Developments. Aust J Chem 2019. [DOI: 10.1071/ch19279] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of metalloligands as building blocks for the assembly of metallo-organic cages has received increasing attention over the past two decades or so. In part, the popularity of this approach reflects its stepwise nature that lends itself to the predesigned construction of metallocages and especially heteronuclear metallocages. The focus of the present discussion is on the use of metalloligands for the construction of discrete polyhedral cages, very often incorporating heterometal ions as structural elements. The metalloligand approach uses metal-bound multifunctional ligand building blocks that display predesigned structural properties for coordination to a second metal ion such that the rational design and construction of both homo- and heteronuclear metal–organic cages are facilitated. The present review covers published literature in the area from early 2015 to early 2019.
Collapse
|