1
|
An J, Kim K, Lim HJ, Kim HY, Shin J, Park I, Cho I, Kim HY, Kim S, McLean C, Choi KY, Kim Y, Lee KH, Kim JS. Early onset diagnosis in Alzheimer's disease patients via amyloid-β oligomers-sensing probe in cerebrospinal fluid. Nat Commun 2024; 15:1004. [PMID: 38307843 PMCID: PMC10837422 DOI: 10.1038/s41467-024-44818-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024] Open
Abstract
Amyloid-β (Aβ) oligomers are implicated in the onset of Alzheimer's disease (AD). Herein, quinoline-derived half-curcumin-dioxaborine (Q-OB) fluorescent probe was designed for detecting Aβ oligomers by finely tailoring the hydrophobicity of the biannulate donor motifs in donor-π-acceptor structure. Q-OB shows a great sensing potency in dynamically monitoring oligomerization of Aβ during amyloid fibrillogenesis in vitro. In addition, we applied this strategy to fluorometrically analyze Aβ self-assembly kinetics in the cerebrospinal fluids (CSF) of AD patients. The fluorescence intensity of Q-OB in AD patients' CSF revealed a marked change of log (I/I0) value of 0.34 ± 0.13 (cognitive normal), 0.15 ± 0.12 (mild cognitive impairment), and 0.14 ± 0.10 (AD dementia), guiding to distinguish a state of AD continuum for early diagnosis of AD. These studies demonstrate the potential of our approach can expand the currently available preclinical diagnostic platform for the early stages of AD, aiding in the disruption of pathological progression and the development of appropriate treatment strategies.
Collapse
Affiliation(s)
- Jusung An
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Kyeonghwan Kim
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon, 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Korea
| | - Ho Jae Lim
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Korea
| | - Hye Yun Kim
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon, 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Korea
| | - Jinwoo Shin
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - InWook Park
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon, 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Korea
| | - Illhwan Cho
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon, 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Korea
| | - Hyeong Yun Kim
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon, 21983, Korea
| | - Sunghoon Kim
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon, 21983, Korea
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, Gangnam Severance Hospital, Yonsei University, Incheon, 21983, Korea
- College of Pharmacy, College of Medicine, Interdisciplinary Biomedical Center, Gangnam Severance Hospital, Yonsei University, Incheon, 21983, Korea
| | - Catriona McLean
- Department of Pathology, The Alfred Hospital, Melbourne, 3004, Australia
| | - Kyu Yeong Choi
- Gwangju Alzheimer's & Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Korea
| | - YoungSoo Kim
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon, 21983, Korea.
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Korea.
| | - Kun Ho Lee
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Korea.
- Gwangju Alzheimer's & Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Korea.
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, 41062, Korea.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
- TheranoChem Incorporation, Seongbuk-gu, Seoul, 02856, Korea.
| |
Collapse
|
3
|
Wang K, Jiao Y, Ma Q, Shu W, Xiao H, Zhang T, Liu Y. Construction and Application of a New Polarity‐Sensitive Fluorescent Probe Based on the Excited‐State Intramolecular Proton Transfer Mechanism. ChemistrySelect 2022. [DOI: 10.1002/slct.202202756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kai Wang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| | - Yawen Jiao
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| | - Qingqing Ma
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| | - Wei Shu
- School of Life Sciences and Medicine Shandong University of Technology Zibo 255049 P. R. China
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
- College of Chemistry Chemical Engineering and Materials Science Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals Shandong Normal University Jinan 250014 P. R. China
| | - Tian Zhang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| | - Yuying Liu
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| |
Collapse
|
4
|
Zhang C, An J, Wu J, Liu W, Rha H, Kim JS, Wang P. Structural modification of NIR-II fluorophores for angiography beyond 1300 nm: Expanding the xanthene universe. Biosens Bioelectron 2022; 217:114701. [PMID: 36115125 DOI: 10.1016/j.bios.2022.114701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
Fluorescence bioimaging via the second near-infrared (NIR-II) window can provide precise images with a low background signal due to attenuated absorption and scattering in biological tissues. However, it is challenging to realize organic fluorophores' absorption/emission wavelength beyond 1300 nm depending on their intrinsic emission of monomers. Reducing parasitic aggregation caused quenching (ACQ) effect is expected as an efficient strategy to achieve fluorescence bioimaging in an ideal region. Herein, two NIR-II xanthene fluorophores (CM1 and CM2) with different side chains on identical skeletons were synthesized. Besides, their corresponding assemblies (CM1 NPs and CM2 NPs) were subsequently prepared, which exhibited distinct spectroscopic properties. Notably, CM2 NPs exhibited a significantly reduced ACQ effect with maximal absorption/emission extended to 1235/1250 nm. Molecular dynamics simulations revealed that intermolecular hydrogen bond, π-π interaction, and CH-π interaction of CM2 were essential for the reduced ACQ effect. In vivo hindlimb angiography showed that CM2 NPs could distinguish the neighboring artery and vein in high resolution. Besides, CM2 NPs could achieve angiography beyond 1300 nm and even resolve capillaries as small as 0.23 mm. This study provides a new strategy for reducing the ACQ effect by controlling different side chains of NIR-II xanthene dyes for angiography beyond 1300 nm.
Collapse
Affiliation(s)
- Chuangli Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jusung An
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China.
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hyeonji Rha
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
6
|
An J, Verwilst P, Aziz H, Shin J, Lim S, Kim I, Kim YK, Kim JS. Picomolar-sensitive β-amyloid fibril fluorophores by tailoring the hydrophobicity of biannulated π-elongated dioxaborine-dyes. Bioact Mater 2022; 13:239-248. [PMID: 35224305 PMCID: PMC8845109 DOI: 10.1016/j.bioactmat.2021.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
The pathological origin of Alzheimer's disease (AD) is still shrouded in mystery, despite intensive worldwide research efforts. The selective visualization of β-amyloid (Aβ), the most abundant proteinaceous deposit in AD, is pivotal to reveal AD pathology. To date, several small-molecule fluorophores for Aβ species have been developed, with increasing binding affinities. In the current work, two organic small-molecule dioxaborine-derived fluorophores were rationally designed through tailoring the hydrophobicity with the aim to enhance the binding affinity for Aβ1-42 fibrils -while concurrently preventing poor aqueous solubility-via biannulate donor motifs in D-π-A dyes. An unprecedented sub-nanomolar affinity was found (K d = 0.62 ± 0.33 nM) and applied to super-sensitive and red-emissive fluorescent staining of amyloid plaques in cortical brain tissue ex vivo. These fluorophores expand the dioxaborine-curcumin-based family of Aβ-sensitive fluorophores with a promising new imaging agent.
Collapse
Affiliation(s)
- Jusung An
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Peter Verwilst
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, 3000, Leuven, Belgium
| | - Hira Aziz
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea
| | - Jinwoo Shin
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Sungsu Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Ilwha Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Yun Kyung Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|