1
|
Murugesan V, Govindarasu M, Manoharadas S, Pandiaraj S, Thiruvengadam M, Govindasamy R, Vaiyapuri M. Combinatorial anticancer effects of multi metal ion and drug substitute with hydroxyapatite coatings on surgical grade 316LSS stainless steel alloys towards biomedical applications. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2023; 27:7244-7258. [DOI: 10.1016/j.jmrt.2023.11.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Dorozhkin SV. There Are over 60 Ways to Produce Biocompatible Calcium Orthophosphate (CaPO4) Deposits on Various Substrates. JOURNAL OF COMPOSITES SCIENCE 2023; 7:273. [DOI: 10.3390/jcs7070273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A The present overview describes various production techniques for biocompatible calcium orthophosphate (abbreviated as CaPO4) deposits (coatings, films and layers) on the surfaces of various types of substrates to impart the biocompatible properties for artificial bone grafts. Since, after being implanted, the grafts always interact with the surrounding biological tissues at the interfaces, their surface properties are considered critical to clinical success. Due to the limited number of materials that can be tolerated in vivo, a new specialty of surface engineering has been developed to desirably modify any unacceptable material surface characteristics while maintaining the useful bulk performance. In 1975, the development of this approach led to the emergence of a special class of artificial bone grafts, in which various mechanically stable (and thus suitable for load-bearing applications) implantable biomaterials and artificial devices were coated with CaPO4. Since then, more than 7500 papers have been published on this subject and more than 500 new publications are added annually. In this review, a comprehensive analysis of the available literature has been performed with the main goal of finding as many deposition techniques as possible and more than 60 methods (double that if all known modifications are counted) for producing CaPO4 deposits on various substrates have been systematically described. Thus, besides the introduction, general knowledge and terminology, this review consists of two unequal parts. The first (bigger) part is a comprehensive summary of the known CaPO4 deposition techniques both currently used and discontinued/underdeveloped ones with brief descriptions of their major physical and chemical principles coupled with the key process parameters (when possible) to inform readers of their existence and remind them of the unused ones. The second (smaller) part includes fleeting essays on the most important properties and current biomedical applications of the CaPO4 deposits with an indication of possible future developments.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
3
|
Jones CF, Quarrington RD, Tsangari H, Starczak Y, Mulaibrahimovic A, Burzava ALS, Christou C, Barker AJ, Morel J, Bright R, Barker D, Brown T, Vasilev K, Anderson PH. A Novel Nanostructured Surface on Titanium Implants Increases Osseointegration in a Sheep Model. Clin Orthop Relat Res 2022; 480:2232-2250. [PMID: 36001022 PMCID: PMC10476811 DOI: 10.1097/corr.0000000000002327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/28/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND A nanostructured titanium surface that promotes antimicrobial activity and osseointegration would provide the opportunity to create medical implants that can prevent orthopaedic infection and improve bone integration. Although nanostructured surfaces can exhibit antimicrobial activity, it is not known whether these surfaces are safe and conducive to osseointegration. QUESTIONS/PURPOSES Using a sheep animal model, we sought to determine whether the bony integration of medical-grade, titanium, porous-coated implants with a unique nanostructured surface modification (alkaline heat treatment [AHT]) previously shown to kill bacteria was better than that for a clinically accepted control surface of porous-coated titanium covered with hydroxyapatite (PCHA) after 12 weeks in vivo. The null hypothesis was that there would be no difference between implants with respect to the primary outcomes: interfacial shear strength and percent intersection surface (the percentage of implant surface with bone contact, as defined by a micro-CT protocol), and the secondary outcomes: stiffness, peak load, energy to failure, and micro-CT (bone volume/total volume [BV/TV], trabecular thickness [Tb.Th], and trabecular number [Tb.N]) and histomorphometric (bone-implant contact [BIC]) parameters. METHODS Implants of each material (alkaline heat-treated and hydroxyapatite-coated titanium) were surgically inserted into femoral and tibial metaphyseal cancellous bone (16 per implant type; interference fit) and in tibial cortices at three diaphyseal locations (24 per implant type; line-to-line fit) in eight skeletally mature sheep. At 12 weeks postoperatively, bones were excised to assess osseointegration of AHT and PCHA implants via biomechanical push-through tests, micro-CT, and histomorphometry. Bone composition and remodeling patterns in adult sheep are similar to that of humans, and this model enables comparison of implants with ex vivo outcomes that are not permissible with humans. Comparisons of primary and secondary outcomes were undertaken with linear mixed-effects models that were developed for the cortical and cancellous groups separately and that included a random effect of animals, covariates to adjust for preoperative bodyweight, and implant location (left/right limb, femoral/tibial cancellous, cortical diaphyseal region, and medial/lateral cortex) as appropriate. Significance was set at an alpha of 0.05. RESULTS The estimated marginal mean interfacial shear strength for cancellous bone, adjusted for covariates, was 1.6 MPa greater for AHT implants (9.3 MPa) than for PCHA implants (7.7 MPa) (95% CI 0.5 to 2.8; p = 0.006). Similarly, the estimated marginal mean interfacial shear strength for cortical bone, adjusted for covariates, was 6.6 MPa greater for AHT implants (25.5 MPa) than for PCHA implants (18.9 MPa) (95% CI 5.0 to 8.1; p < 0.001). No difference in the implant-bone percent intersection surface was detected for cancellous sites (cancellous AHT 55.1% and PCHA 58.7%; adjusted difference of estimated marginal mean -3.6% [95% CI -8.1% to 0.9%]; p = 0.11). In cortical bone, the estimated marginal mean percent intersection surface at the medial site, adjusted for covariates, was 11.8% higher for AHT implants (58.1%) than for PCHA (46.2% [95% CI 7.1% to 16.6%]; p < 0.001) and was not different at the lateral site (AHT 75.8% and PCHA 74.9%; adjusted difference of estimated marginal mean 0.9% [95% CI -3.8% to 5.7%]; p = 0.70). CONCLUSION These data suggest there is stronger integration of bone on the AHT surface than on the PCHA surface at 12 weeks postimplantation in this sheep model. CLINICAL RELEVANCE Given that the AHT implants formed a more robust interface with cortical and cancellous bone than the PCHA implants, a clinical noninferiority study using hip stems with identical geometries can now be performed to compare the same surfaces used in this study. The results of this preclinical study provide an ethical baseline to proceed with such a clinical study given the potential of the alkaline heat-treated surface to reduce periprosthetic joint infection and enhance implant osseointegration.
Collapse
Affiliation(s)
- Claire F. Jones
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- School of Mechanical Engineering, The University of Adelaide, Adelaide, Australia
| | - Ryan D. Quarrington
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Helen Tsangari
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Yolandi Starczak
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Adnan Mulaibrahimovic
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Anouck L. S. Burzava
- STEM, University of South Australia, Adelaide, Australia
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Chris Christou
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Alex J. Barker
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | | | - Richard Bright
- STEM, University of South Australia, Adelaide, Australia
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | | | | | - Krasimir Vasilev
- STEM, University of South Australia, Adelaide, Australia
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Paul H. Anderson
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- Future Industries Institute, University of South Australia, Adelaide, Australia
| |
Collapse
|
4
|
Electrodeposition of Calcium Phosphate Coatings on Metallic Substrates for Bone Implant Applications: A Review. COATINGS 2022. [DOI: 10.3390/coatings12040539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review summaries more than three decades of scientific knowledge on electrodeposition of calcium phosphate coatings. This low-temperature process aims to make the surface of metallic bone implants bioactive within a physiological environment. The first part of the review describes the reaction mechanisms that lead to the synthesis of a bioactive coating. Electrodeposition occurs in three consecutive steps that involve electrochemical reactions, pH modification, and precipitation of the calcium phosphate coating. However, the process also produces undesired dihydrogen bubbles during the deposition because of the reduction of water, the solvent of the electrolyte solution. To prevent the production of large amounts of dihydrogen bubbles, the current density value is limited during deposition. To circumvent this issue, the use of pulsed current has been proposed in recent years to replace the traditional direct current. Thanks to breaking times, dihydrogen bubbles can regularly escape from the surface of the implant, and the deposition of the calcium phosphate coating is less disturbed by the accumulation of bubbles. In addition, the pulsed current has a positive impact on the chemical composition, morphology, roughness, and mechanical properties of the electrodeposited calcium phosphate coating. Finally, the review describes one of the most interesting properties of electrodeposition, i.e., the possibility of adding ionic substituents to the calcium phosphate crystal lattice to improve the biological performance of the bone implant. Several cations and anions are reviewed from the scientific literature with a description of their biological impact on the physiological environment.
Collapse
|
5
|
Koumya Y, Ait Salam Y, Khadiri ME, Benzakour J, Romane A, Abouelfida A, Benyaich A. Pitting corrosion behavior of SS-316L in simulated body fluid and electrochemically assisted deposition of hydroxyapatite coating. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01517-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Škugor Rončević I, Vladislavić N, Buzuk M, Buljac M. Electrodeposition of hydroxyapatite coating on Mg alloy modified with organic acid self-assembled monolayers. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819895980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calcium phosphate coatings are used in orthopedics due to their excellent bioactivity, which improves the bonding between the metal implant and the bone. The use of self-assembling monolayers of long-chain organic acids can induce calcium phosphate growth. In this article, the self-assembling monolayers of stearic acid and octadecylphosphonic acid formed on the Mg alloy surface were additionally modified with electrodeposited hydroxyapatite coating to increase the bioactivity and biocompatibility of the Mg alloy in a physiological solution. Hydroxyapatite coating was prepared by a two-step reaction: hydrogen phosphate formed by electrodeposition at constant potential was converted into hydroxyapatite coating through an acid–base reaction. The results obtained by voltammetry and electrochemical impedance spectroscopy have shown a beneficial effect of organic acid self-assembling monolayer and especially of organic acid self-assembling monolayer modification by hydroxyapatite electrodeposition on the corrosion properties of Mg alloy in physiological solution. Fourier transform infrared spectroscopy and scanning electron microscopy were used to verify the existence of the organic acid SAM|HAp film on the Mg alloy surface and their morphology.
Collapse
Affiliation(s)
- Ivana Škugor Rončević
- Faculty of Chemistry and Technology, Department of General and Inorganic Chemistry, University of Split, Split, Croatia
| | - Nives Vladislavić
- Faculty of Chemistry and Technology, Department of General and Inorganic Chemistry, University of Split, Split, Croatia
| | - Marijo Buzuk
- Faculty of Chemistry and Technology, Department of General and Inorganic Chemistry, University of Split, Split, Croatia
| | - Maša Buljac
- Faculty of Chemistry and Technology, Department of Environmental Chemistry, University of Split, Split, Croatia
| |
Collapse
|
7
|
Shaji S, Mucha NR, Fialkova S, Kumar D. Morphological data on soft ferromagnetic Fe 90Ta 10 thin films. Data Brief 2019; 27:104714. [PMID: 31886330 PMCID: PMC6920496 DOI: 10.1016/j.dib.2019.104714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/09/2019] [Accepted: 10/17/2019] [Indexed: 11/26/2022] Open
Abstract
Iron-tantalum (Fe–Ta) thin films were synthesized on silicon (Si) (100) substrates using a pulsed laser deposition (PLD) technique. For the analysis of all reported data, please refer to our main article “Magnetic and electrical properties of Fe90Ta10 thin films [1]”. Morphological data confirm the amorphous nature of the film. Mesokurtic surface of the film was revealed using atomic force microscopy (AFM) analysis. The compositions of target and films were determined using x-ray fluorescence (XRF) data. The composition of Fe–Ta clusters, observed on the film surface, was measured using energy dispersive x-ray (EDX) analysis.
Collapse
Affiliation(s)
- Surabhi Shaji
- Department of Mechanical Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA
| | - Nikhil R Mucha
- Department of Mechanical Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA
| | - Svitlana Fialkova
- Department of Mechanical Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA
| | - Dhananjay Kumar
- Department of Mechanical Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA
| |
Collapse
|
8
|
Lavenus S, Rozé J, Louarn G, Layrolle P. Impact of nanotechnology on dental implants. NANOBIOMATERIALS IN CLINICAL DENTISTRY 2019:385-399. [DOI: 10.1016/b978-0-12-815886-9.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Kozelskaya AI, Bolbasov EN, Golovkin AS, Mishanin AI, Viknianshchuk AN, Shesterikov EV, Ashrafov А, Novikov VA, Fedotkin AY, Khlusov IA, Tverdokhlebov SI. Modification of the Ceramic Implant Surfaces from Zirconia by the Magnetron Sputtering of Different Calcium Phosphate Targets: A Comparative Study. MATERIALS 2018; 11:ma11101949. [PMID: 30314394 PMCID: PMC6213365 DOI: 10.3390/ma11101949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 01/22/2023]
Abstract
In this study, thin calcium phosphate (Ca-P) coatings were deposited on zirconia substrates by radiofrequency (RF) magnetron sputtering using different calcium phosphate targets (calcium phosphate tribasic (CPT), hydroxyapatite (HA), calcium phosphate monobasic, calcium phosphate dibasic dehydrate (DCPD) and calcium pyrophosphate (CPP) powders). The sputtering of calcium phosphate monobasic and DCPD powders was carried out without an inert gas in the self-sustaining plasma mode. The physico-chemical, mechanical and biological properties of the coatings were investigated. Cell adhesion on the coatings was examined using mesenchymal stem cells (MSCs). The CPT coating exhibited the best cell adherence among all the samples, including the uncoated zirconia substrate. The cells were spread uniformly over the surfaces of all samples.
Collapse
Affiliation(s)
- Anna I Kozelskaya
- Laboratory for Plasma Hybrid Systems, The Weinberg Research Center, School of Nuclear Science & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia.
| | - Evgeny N Bolbasov
- Laboratory for Plasma Hybrid Systems, The Weinberg Research Center, School of Nuclear Science & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia.
| | - Alexey S Golovkin
- Institution of molecular biology and genetics, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia.
| | - Alexander I Mishanin
- Institution of molecular biology and genetics, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia.
| | - Alice N Viknianshchuk
- Institution of molecular biology and genetics, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia.
| | - Evgeny V Shesterikov
- Laboratory for Plasma Hybrid Systems, The Weinberg Research Center, School of Nuclear Science & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia.
- Laboratory of Lidar Methods, V.E. Zuev Institute of Atmospheric Optics SB RAS, 634055 Tomsk, Russia.
| | - Аndrey Ashrafov
- Laboratory for Plasma Hybrid Systems, The Weinberg Research Center, School of Nuclear Science & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia.
| | - Vadim A Novikov
- Faculty of Physics, Department of Semiconductor Physics, Tomsk State University, 634050 Tomsk, Russia.
| | - Alexander Y Fedotkin
- Laboratory for Plasma Hybrid Systems, The Weinberg Research Center, School of Nuclear Science & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia.
| | - Igor A Khlusov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia.
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia.
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia.
| | - Sergey I Tverdokhlebov
- Laboratory for Plasma Hybrid Systems, The Weinberg Research Center, School of Nuclear Science & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia.
| |
Collapse
|
10
|
Rehabilitation of Postextractive Socket in the Premaxilla: A 12-Year Study on 27 Titanium Plasma Spray Resorbable Calcium Phosphate Coated Single Implants. IMPLANT DENT 2018; 27:452-460. [PMID: 30028390 DOI: 10.1097/id.0000000000000790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate the peri-implant bone tissue level on postextractive resorbable calcium phosphate coated single implants placed in premaxillary sites grafted with autologous bone, anorganic bovine bone (ABB), platelet-rich plasma (PRP), and keratinized epithelial connective graft over 12 years. MATERIALS AND METHODS A total of 27 patients received a postextractive single implant in premaxillary sites grafted with ABB and PRP. Two months later, a keratinized epithelial connective graft was applied and the implants loaded. Clinical and radiographical evaluations were performed at baseline, 6 and 18 months, 4 and 6 years after the implant insertion, and then every 2 years up to the 12th year. RESULTS After 12 years, a total of 22 implants (81.48%), were available for the final data analysis; the implants achieved a 100% cumulative survival rate, and only a mild degree of periodontal tissue inflammation was recorded. The radiographic evaluation revealed a physiological marginal bone remodeling over the follow-up. CONCLUSION Although a good preservation of the residual bone tissue in postextraction implant sites treated with keratinized epithelial connective tissue grafts was observed, the low number of treated cases does not allow us to propose this experimental protocol to all cases of bone defects but it certainly represents a new option. Further studies on a greater number of patients and using implants with different surface characteristics should be conducted for a better understanding of the indications of the proposed treatment.
Collapse
|
11
|
Subramani K, Lavenus S, Rozé J, Louarn G, Layrolle P. Impact of nanotechnology on dental implants. EMERGING NANOTECHNOLOGIES IN DENTISTRY 2018:83-97. [DOI: 10.1016/b978-0-12-812291-4.00005-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Marashi-Najafi F, Khalil-Allafi J, Etminanfar M. Biocompatibility of hydroxyapatite coatings deposited by pulse electrodeposition technique on the Nitinol superelastic alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:278-286. [DOI: 10.1016/j.msec.2017.03.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/28/2017] [Accepted: 03/09/2017] [Indexed: 10/20/2022]
|
13
|
Sun Q, Yang Y, Luo W, Zhao J, Zhou Y. The Influence of Electrolytic Concentration on the Electrochemical Deposition of Calcium Phosphate Coating on a Direct Laser Metal Forming Surface. Int J Anal Chem 2017; 2017:8610858. [PMID: 28250771 PMCID: PMC5303588 DOI: 10.1155/2017/8610858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/31/2016] [Accepted: 01/10/2017] [Indexed: 02/05/2023] Open
Abstract
A calcium phosphate (CaP) coating on titanium surface enhances its biocompatibility, thus facilitating osteoconduction and osteoinduction with the inorganic phase of the human bone. Electrochemical deposition has been suggested as an effective means of fabricating CaP coatings on porous surface. The purpose of this study was to develop CaP coatings on a direct laser metal forming implant using electrochemical deposition and to investigate the effect of electrolytic concentration on the coating's morphology and structure by X-ray diffraction, scanning electron microscopy, water contact angle analysis, and Fourier transform infrared spectroscopy. In group 10-2, coatings were rich in dicalcium phosphate, characterized to be thick, layered, and disordered plates. In contrast, in groups 10-3 and 10-4, the relatively thin and well-ordered coatings predominantly consisted of granular hydroxyapatite. Further, the hydrophilicity and cell affinity were improved as electrolytic concentration increased. In particular, the cells cultured in group 10-3 appeared to have spindle morphology with thick pseudopodia on CaP coatings; these spindles and pseudopodia strongly adhered to the rough and porous surface. By analyzing and evaluating the surface properties, we provided further knowledge on the electrolytic concentration effect, which will be critical for improving CaP coated Ti implants in the future.
Collapse
Affiliation(s)
- Qianyue Sun
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin Province 130021, China
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Yuhui Yang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| | - Wenjing Luo
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin Province 130021, China
| | - Jinghui Zhao
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin Province 130021, China
| | - Yanmin Zhou
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin Province 130021, China
| |
Collapse
|
14
|
Construction of surface HA/TiO2 coating on porous titanium scaffolds and its preliminary biological evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:1047-1056. [DOI: 10.1016/j.msec.2016.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/22/2016] [Accepted: 04/04/2016] [Indexed: 11/23/2022]
|
15
|
Synthesis of calcium hydrogen phosphate and hydroxyapatite coating on SS316 substrate through pulsed electrodeposition. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:875-83. [DOI: 10.1016/j.msec.2016.07.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/21/2016] [Accepted: 07/19/2016] [Indexed: 11/23/2022]
|
16
|
Thomas MB, Metoki N, Mandler D, Eliaz N. In Situ Potentiostatic Deposition of Calcium Phosphate with Gentamicin-Loaded Chitosan Nanoparticles on Titanium Alloy Surfaces. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.10.186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Calcium orthophosphate deposits: Preparation, properties and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:272-326. [PMID: 26117762 DOI: 10.1016/j.msec.2015.05.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/21/2015] [Accepted: 05/08/2015] [Indexed: 01/12/2023]
Abstract
Since various interactions among cells, surrounding tissues and implanted biomaterials always occur at their interfaces, the surface properties of potential implants appear to be of paramount importance for the clinical success. In view of the fact that a limited amount of materials appear to be tolerated by living organisms, a special discipline called surface engineering was developed to initiate the desirable changes to the exterior properties of various materials but still maintaining their useful bulk performances. In 1975, this approach resulted in the introduction of a special class of artificial bone grafts, composed of various mechanically stable (consequently, suitable for load bearing applications) implantable biomaterials and/or bio-devices covered by calcium orthophosphates (CaPO4) to both improve biocompatibility and provide an adequate bonding to the adjacent bones. Over 5000 publications on this topic were published since then. Therefore, a thorough analysis of the available literature has been performed and about 50 (this number is doubled, if all possible modifications are counted) deposition techniques of CaPO4 have been revealed, systematized and described. These CaPO4 deposits (coatings, films and layers) used to improve the surface properties of various types of artificial implants are the topic of this review.
Collapse
|
18
|
Chai YC, Geris L, Bolander J, Pyka G, Van Bael S, Luyten FP, Schrooten J. In vivo ectopic bone formation by devitalized mineralized stem cell carriers produced under mineralizing culture condition. Biores Open Access 2014; 3:265-77. [PMID: 25469312 PMCID: PMC4245878 DOI: 10.1089/biores.2014.0050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Functionalization of tissue engineering scaffolds with in vitro–generated bone-like extracellular matrix (ECM) represents an effective biomimetic approach to promote osteogenic differentiation of stem cells in vitro. However, the bone-forming capacity of these constructs (seeded with or without cells) is so far not apparent. In this study, we aimed at developing a mineralizing culture condition to biofunctionalize three-dimensional (3D) porous scaffolds with highly mineralized ECM in order to produce devitalized, osteoinductive mineralized carriers for human periosteal-derived progenitors (hPDCs). For this, three medium formulations [i.e., growth medium only (BM1), with ascorbic acid (BM2), and with ascorbic acid and dexamethasone (BM3)] supplemented with calcium (Ca2+) and phosphate (PO43−) ions simultaneously as mineralizing source were investigated. The results showed that, besides the significant impacts on enhancing cell proliferation (the highest in BM3 condition), the formulated mineralizing media differentially regulated the osteochondro-related gene markers in a medium-dependent manner (e.g., significant upregulation of BMP2, bone sialoprotein, osteocalcin, and Wnt5a in BM2 condition). This has resulted in distinguished cell populations that were identifiable by specific gene signatures as demonstrated by the principle component analysis. Through devitalization, mineralized carriers with apatite crystal structures unique to each medium condition (by X-ray diffraction and SEM analysis) were obtained. Quantitatively, BM3 condition produced carriers with the highest mineral and collagen contents as well as human-specific VEGF proteins, followed by BM2 and BM1 conditions. Encouragingly, all mineralized carriers (after reseeded with hPDCs) induced bone formation after 8 weeks of subcutaneous implantation in nude mice models, with BM2-carriers inducing the highest bone volume, and the lowest in the BM3 condition (as quantitated by nano-computed tomography [nano-CT]). Histological analysis revealed different bone formation patterns, either bone ossicles containing bone marrow surrounding the scaffold struts (in BM2) or bone apposition directly on the struts' surface (in BM1 and BM3). In conclusion, we have presented experimental data on the feasibility to produce devitalized osteoinductive mineralized carriers by functionalizing 3D porous scaffolds with an in vitro cell-made mineralized matrix under the mineralizing culture conditions.
Collapse
Affiliation(s)
- Yoke Chin Chai
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center , KU Leuven, Leuven, Belgium . ; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya , Kuala Lumpur, Malaysia . ; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium . ; Biomechanics Research Unit, University of Liege , Liege, Belgium
| | - Johanna Bolander
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center , KU Leuven, Leuven, Belgium . ; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium
| | - Grzegorz Pyka
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium . ; Department of Materials Engineering, KU Leuven , Heverlee, Belgium
| | - Simon Van Bael
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium . ; Division of Production Engineering, Machine Design and Automation, Department of Mechanical Engineering, KU Leuven , Heverlee, Belgium
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center , KU Leuven, Leuven, Belgium . ; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium
| | - Jan Schrooten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium . ; Department of Materials Engineering, KU Leuven , Heverlee, Belgium
| |
Collapse
|
19
|
Rozé J, Hoornaert A, Layrolle P. Correlation between primary stability and bone healing of surface treated titanium implants in the femoral epiphyses of rabbits. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1941-1951. [PMID: 24818874 DOI: 10.1007/s10856-014-5231-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to analyse the stability and osseointegration of surface treated titanium implants in rabbit femurs. The implants were either grit-blasted and acid-etched (BE Group), calcium phosphate (CaP) coated by using the electrodeposition technique, or had bioactive molecules incorporated into the CaP coatings: either cyclic adenosine monophosphate (cAMP) or dexamethasone (Dex). Twenty four cylindrical titanium implants (n = 6/group) were inserted bilaterally into the femoral epiphyses of New Zealand White, female, adult rabbits for 4 weeks. Implant stability was measured by resonance frequency analysis (RFA) the day of implantation and 4 weeks later, and correlated to histomorphometric parameters, bone implant contact (BIC) and bone growth around the implants (BS/TS 0.5 mm). The BIC values for the four groups were not significantly different. That said, histology indicated that the CaP coatings improved bone growth around the implants. The incorporation of bioactive molecules (cAMP and Dex) into the CaP coatings did not improve bone growth compared to the BE group. Implant stability quotients (ISQ) increased in each group after 4 weeks of healing but were not significantly different between the groups. A good correlation was observed between ISQ and BS/TS 0.5 mm indicating that RFA is a non-invasive method that can be used to assess the osseointegration of implants. In conclusion, the CaP coating enhanced bone formation around the implants, which was correlated to stability measured by resonance frequency analysis. Furthers studies need to be conducted in order to explore the benefits of incorporating bioactive molecules into the coatings for peri-implant bone healing.
Collapse
Affiliation(s)
- Julie Rozé
- CHU Nantes, Faculty of Dental Surgery, University of Nantes, 1 Place Alexis Ricordeau, Nantes, 44042, France
| | | | | |
Collapse
|
20
|
Lavenus S, Rozé J, Louarn G, Layrolle P. Impact of Nanotechnology on Dental Implants. NANOBIOMATERIALS IN CLINICAL DENTISTRY 2013:323-336. [DOI: 10.1016/b978-1-4557-3127-5.00016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Drevet R, Viteaux A, Maurin JC, Benhayoune H. Human osteoblast-like cells response to pulsed electrodeposited calcium phosphate coatings. RSC Adv 2013. [DOI: 10.1039/c3ra23255g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Dorozhkin SV. Calcium orthophosphate coatings, films and layers. Prog Biomater 2012; 1:1. [PMID: 29470670 PMCID: PMC5120666 DOI: 10.1186/2194-0517-1-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 06/14/2012] [Indexed: 11/16/2022] Open
Abstract
In surgical disciplines, where bones have to be repaired, augmented or improved, bone substitutes are essential. Therefore, an interest has dramatically increased in application of synthetic bone grafts. As various interactions among cells, surrounding tissues and implanted biomaterials always occur at the interfaces, the surface properties of the implants are of the paramount importance in determining both the biological response to implants and the material response to the physiological conditions. Hence, a surface engineering is aimed to modify both the biomaterials, themselves, and biological responses through introducing desirable changes to the surface properties of the implants but still maintaining their bulk mechanical properties. To fulfill these requirements, a special class of artificial bone grafts has been introduced in 1976. It is composed of various mechanically stable (therefore, suitable for load bearing applications) biomaterials and/or bio-devices with calcium orthophosphate coatings, films and layers on their surfaces to both improve interactions with the surrounding tissues and provide an adequate bonding to bones. Many production techniques of calcium orthophosphate coatings, films and layers have been already invented and new promising techniques are continuously investigated. These specialized coatings, films and layers used to improve the surface properties of various types of artificial implants are the topic of this review.
Collapse
|
23
|
Chai YC, Kerckhofs G, Roberts SJ, Van Bael S, Schepers E, Vleugels J, Luyten FP, Schrooten J. Ectopic bone formation by 3D porous calcium phosphate-Ti6Al4V hybrids produced by perfusion electrodeposition. Biomaterials 2012; 33:4044-58. [PMID: 22381474 DOI: 10.1016/j.biomaterials.2012.02.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/09/2012] [Indexed: 01/17/2023]
Abstract
Successful clinical repair of non-healing skeletal defects requires the use of bone substitutes with robust bone inductivity and excellent biomechanical stability. Thus, three-dimensionally functionalised porous calcium phosphate-Ti6Al4V (CaP-Ti) hybrids were produced by perfusion electrodeposition, and the in vitro and in vivo biological performances were evaluated using human periosteum derived cells (hPDCs). By applying various current densities at the optimised deposition conditions, CaP coatings with sub-micrometer to nano-scale porous crystalline structures and different ion dissolution kinetics were deposited on the porous Ti6Al4V scaffolds. These distinctive physicochemical properties caused a significant impact on in vitro proliferation, osteogenic differentiation, and matrix mineralisation of hPDCs. This includes a potential role of hPDCs in mediating osteoclastogenesis for the resorption of CaP coatings, as indicated by a significant down-regulation of osteoprotegerin (OPG) gene expression and by the histological observation of abundant multi-nucleated giant cells near to the coatings. By subcutaneous implantation, the produced hybrids induced ectopic bone formation, which was highly dependent on the physicochemical properties of the CaP coating (including the Ca(2+) dissolution kinetics and coating surface topography), in a cell density-dependent manner. This study provided further insight on stem cell-CaP biomaterial interactions, and the feasibility to produced bone reparative units that are predictively osteoinductive in vivo by perfusion electrodeposition technology.
Collapse
Affiliation(s)
- Yoke Chin Chai
- Laboratory for Skeletal Development and Joint Disorders, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lavenus S, Rozé J, Hoornaert A, Louarn G, Layrolle P. Impact of Nanotechnology on Dental Implants. EMERGING NANOTECHNOLOGIES IN DENTISTRY 2012:71-84. [DOI: 10.1016/b978-1-4557-7862-1.00005-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Shadanbaz S, Dias GJ. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater 2012; 8:20-30. [PMID: 22040686 DOI: 10.1016/j.actbio.2011.10.016] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/13/2011] [Accepted: 10/13/2011] [Indexed: 12/13/2022]
Abstract
Magnesium has been suggested as a revolutionary biodegradable metal for use as an orthopaedic material. As a biocompatible and degradable metal, it has several advantages over the permanent metallic materials currently in use, including eliminating the effects of stress shielding, improving biocompatibility concerns in vivo and improving degradation properties, removing the requirement of a second surgery for implant removal. The rapid degradation of magnesium, however, is a double-edged sword as it is necessary to control the corrosion rates of the materials to match the rates of bone healing. In response, calcium phosphate coatings have been suggested as a means to control these corrosion rates. The potential calcium phosphate phases and their coating techniques on substrates are numerous and can provide several different properties for different applications. The reactivity and low melting point of magnesium, however, require specific parameters for calcium phosphate coatings to be successful. Within this review, an overview of the different calcium phosphate phases, their properties and their behaviour in vitro and in vivo has been provided, followed by the current coating techniques used for calcium phosphates that may be or may have been adapted for magnesium substrates.
Collapse
Affiliation(s)
- Shaylin Shadanbaz
- Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
26
|
Zhao SF, Jiang QH, Peel S, Wang XX, He FM. Effects of magnesium-substituted nanohydroxyapatite coating on implant osseointegration. Clin Oral Implants Res 2011; 24 Suppl A100:34-41. [PMID: 22145854 DOI: 10.1111/j.1600-0501.2011.02362.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Shi-fang Zhao
- Department of Oral and Maxillofacial Surgery; The Affiliated Stomatology Hospital; School of Medicine; Zhejiang University; Hangzhou; China
| | - Qiao-hong Jiang
- Department of Oral Implantology; The Affiliated Stomatology Hospital; School of Medicine; Zhejiang University; Hangzhou; China
| | - Sean Peel
- Discipline of Oral & Maxillofacial Surgery; Faculty of Dentistry; University of Toronto; Toronto; ON; Canada
| | - Xiao-xiang Wang
- Department of Materials Science and Engineering; Zhejiang University; Hangzhou; China
| | | |
Collapse
|
27
|
Perfusion electrodeposition of calcium phosphate on additive manufactured titanium scaffolds for bone engineering. Acta Biomater 2011; 7:2310-9. [PMID: 21215337 DOI: 10.1016/j.actbio.2010.12.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/22/2010] [Accepted: 12/29/2010] [Indexed: 12/17/2022]
Abstract
A perfusion electrodeposition (P-ELD) system was reported to functionalize additive manufactured Ti6Al4V scaffolds with a calcium phosphate (CaP) coating in a controlled and reproducible manner. The effects and interactions of four main process parameters - current density (I), deposition time (t), flow rate (f) and process temperature (T) - on the properties of the CaP coating were investigated. The results showed a direct relation between the parameters and the deposited CaP mass, with a significant effect for t (P=0.001) and t-f interaction (P=0.019). Computational fluid dynamic analysis showed a relatively low electrolyte velocity within the struts and a high velocity in the open areas within the P-ELD chamber, which were not influenced by a change in f. This is beneficial for promoting a controlled CaP deposition and hydrogen gas removal. Optimization studies showed that a minimum t of 6 h was needed to obtain complete coating of the scaffold regardless of I, and the thickness was increased by increasing I and t. Energy-dispersive X-ray and X-ray diffraction analysis confirmed the deposition of highly crystalline synthetic carbonated hydroxyapatite under all conditions (Ca/P ratio=1.41). High cell viability and cell-material interactions were demonstrated by in vitro culture of human periosteum derived cells on coated scaffolds. This study showed that P-ELD provides a technological tool to functionalize complex scaffold structures with a biocompatible CaP layer that has controlled and reproducible physicochemical properties suitable for bone engineering.
Collapse
|
28
|
Drevet R, Velard F, Potiron S, Laurent-Maquin D, Benhayoune H. In vitro dissolution and corrosion study of calcium phosphate coatings elaborated by pulsed electrodeposition current on Ti6Al4V substrate. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:753-61. [PMID: 21290169 DOI: 10.1007/s10856-011-4251-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 01/23/2011] [Indexed: 05/21/2023]
Abstract
Calcium-deficient hydroxyapatite (Ca-def-HAP) coatings on titanium alloy (Ti6Al4V) substrates are elaborated by pulsed electrodeposition. In vitro dissolution/precipitation process is investigated by immersion of the coated substrate into Dulbecco's Modified Eagle Medium (DMEM) from 1 h to 28 days. Calcium and phosphorus concentrations evolution in the biological liquid are determined by Induced Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) for each immersion time. Physical and chemical characterizations of the coating are performed by scanning electron microscopy (SEM) associated to Energy Dispersive X-ray Spectroscopy (EDXS) for X-ray microanalysis. Surface modifications are investigated by an original method based on the three-dimensional reconstruction of SEM images (3D-SEM). Moreover, corrosion measurements are carried out by potentiodynamic polarization experiments. The results show that the precipitation rate of the Ca-def HAP coating is more pronounced in comparison with that of stoichiometric hydroxyapatite (HAP) used as reference. The precipitated bone-like apatite coating is thick, homogenous and exhibits an improved link to the substrate. Consequently, the corrosion behaviour of the elaborated prosthetic material is improved.
Collapse
Affiliation(s)
- R Drevet
- INSERM UMR-S 926, IFR 53, URCA, 21 rue Clément Ader, BP 138, 51685 Reims Cedex 02, France.
| | | | | | | | | |
Collapse
|
29
|
Leedy MR, Martin HJ, Norowski PA, Jennings JA, Haggard WO, Bumgardner JD. Use of Chitosan as a Bioactive Implant Coating for Bone-Implant Applications. ADVANCES IN POLYMER SCIENCE 2011. [DOI: 10.1007/12_2011_115] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Abstract
The long-term clinical success of dental implants is related to their early osseointegration. This paper reviews the different steps of the interactions between biological fluids, cells, tissues, and surfaces of implants. Immediately following implantation, implants are in contact with proteins and platelets from blood. The differentiation of mesenchymal stem cells will then condition the peri-implant tissue healing. Direct bone-to-implant contact is desired for a biomechanical anchoring of implants to bone rather than fibrous tissue encapsulation. Surfaces properties such as chemistry and roughness play a determinant role in these biological interactions. Physicochemical features in the nanometer range may ultimately control the adsorption of proteins as well as the adhesion and differentiation of cells. Nanotechnologies are increasingly used for surface modifications of dental implants. Another approach to enhance osseointegration is the application of thin calcium phosphate (CaP) coatings. Bioactive CaP nanocrystals deposited on titanium implants are resorbable and stimulate bone apposition and healing. Future nanometer-controlled surfaces may ultimately direct the nature of peri-implant tissues and improve their clinical success rate.
Collapse
|
31
|
Ran W, Tian ZH, Guo B, Shu DL, Nan KH, Wang YJ. Superior biocompatibility and osteogenic efficacy of micro-arc oxidation-treated titanium implants in the canine mandible. Biomed Mater 2009; 4:055003. [DOI: 10.1088/1748-6041/4/5/055003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Radio frequency plasma treatments on titanium for enhancement of bioactivity. Acta Biomater 2008; 4:1953-62. [PMID: 18555755 DOI: 10.1016/j.actbio.2008.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 04/14/2008] [Accepted: 04/25/2008] [Indexed: 11/23/2022]
Abstract
Titanium and its alloys, when treated in alkali solutions, are able to form calcium phosphate coatings on their surface after immersion in supersaturated solutions. In this study, the surfaces of titanium alloy discs were modified by an alkali treatment and a radio frequency (RF) plasma procedure (150 W and 13.56 MHz) in N(2), CO(2) or N(2)/O(2) (80/20%) atmospheres. After the alkali treatment, atomic force microscopy showed differences in the surface roughness of the samples. X-ray photoelectron microscopy indicated that the chemical composition of the surfaces changed after the different alkali and RF plasma treatments. The contact angles were also modified by approximately 5 degrees , making the original titanium surface more hydrophilic. Immersion in a supersaturated calcium phosphate solution was used to evaluate the bioactivity of the RF plasma-treated samples in vitro. Alkali-treated samples gave more homogeneous and thick coatings that those without alkali treatment. The use of RF plasma treatments enhanced the bioactivity of the samples, in particular for treatments performed in N(2) or N(2)/O(2) atmospheres. Energy-dispersive X-ray analysis indicated that coatings had Ca/P ratios between the values of octacalcium phosphate and hydroxyapatite. X-ray diffraction confirmed the presence of these two phases in most of the coatings. This study shows that an RF plasma treatment enhanced the bioactivity of titanium surfaces.
Collapse
|
33
|
Lopez-Heredia MA, Sohier J, Gaillard C, Quillard S, Dorget M, Layrolle P. Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Biomaterials 2008; 29:2608-15. [DOI: 10.1016/j.biomaterials.2008.02.021] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 02/28/2008] [Indexed: 11/17/2022]
|