1
|
Baptista R, Pereira MFC, Maurício A, Rechena D, Infante V, Guedes M. Experimental and numerical characterization of 3D-printed scaffolds under monotonic compression with the aid of micro-CT volume reconstruction. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00122-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
2
|
Gaihre B, Jayasuriya AC. Comparative investigation of porous nano-hydroxyapaptite/chitosan, nano-zirconia/chitosan and novel nano-calcium zirconate/chitosan composite scaffolds for their potential applications in bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:330-339. [PMID: 30033262 PMCID: PMC6061966 DOI: 10.1016/j.msec.2018.05.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 05/04/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023]
Abstract
Zirconium (Zr) based bioceramic nanoparticles, as the filler material to chitosan (CS), for the development of composite scaffolds are less studied compared to hydroxyapatite nanoparticles. This is predominantly due to the biological similarity of nano-hydroxyapatite (nHA; Ca10(PO4)6(OH)2) with bone inorganic component. In this study, we compared the physical and biological properties of CS composite scaffolds hybridized with nHA, nano-zirconia (nZrO; ZrO2), and nano-calcium zirconate (nCZ; CaZrO3). For the first time in this study, the properties of CS-nCZ composite scaffolds have been reported. The porous composite scaffolds were developed using the freeze-drying technique. The compressive strength and modulus were in the range of 50-55 KPa and 0.75-0.95 MPa for composite scaffolds, significantly higher (p < 0.05), compared to CS alone scaffolds (28 KPa and 0.25 MPa) and were comparable among CS-nHA, CS-nZrO, and CS-nCZ scaffolds. Peak force quantitative nanomechanical mapping (PFQNM) using an atomic force microscope (AFM) showed that the Young's modulus of composite material was higher compared to only CS (p < 0.001), and the values were similar among the composite materials. One of the major issues in the use of Zr based bioceramic materials in bone tissue regeneration applications is their lower osteoblasts response. This study has shown that CS-nCZ supported higher proliferation of pre-osteoblasts compared to CS-nZrO and the spreading was more similar to that observed in CS-nHA scaffolds. Taken together, results show that the physical and biological properties, studied here, of CS composite with Zr based bio-ceramic was comparable with CS-nHA composite scaffolds and hence show the prospective of CS-nCZ for future bone tissue engineering applications.
Collapse
Affiliation(s)
- Bipin Gaihre
- Department of Bioengineering, The University of Toledo, Toledo 43614, OH, USA
| | - Ambalangodage C Jayasuriya
- Department of Bioengineering, The University of Toledo, Toledo 43614, OH, USA; Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo 43614, OH, USA.
| |
Collapse
|
3
|
Garagiola U, Grigolato R, Soldo R, Bacchini M, Bassi G, Roncucci R, De Nardi S. Computer-aided design/computer-aided manufacturing of hydroxyapatite scaffolds for bone reconstruction in jawbone atrophy: a systematic review and case report. Maxillofac Plast Reconstr Surg 2016; 38:2. [PMID: 26767187 PMCID: PMC4700069 DOI: 10.1186/s40902-015-0048-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/21/2015] [Indexed: 01/13/2023] Open
Abstract
Background We reviewed the biological and mechanical properties of porous hydroxyapatite (HA) compared to other synthetic materials. Computer-aided design/computer-aided manufacturing (CAD/CAM) was also evaluated to estimate its efficacy with clinical and radiological assessments. Method A systematic search of the electronic literature database of the National Library of Medicine (PubMed-MEDLINE) was performed for articles published in English between January 1985 and September 2013. The inclusion criteria were (1) histological evaluation of the biocompatibility and osteoconductivity of porous HA in vivo and in vitro, (2) evaluation of the mechanical properties of HA in relation to its porosity, (3) comparison of the biological and mechanical properties between several biomaterials, and (4) clinical and radiological evaluation of the precision of CAD/CAM techniques. Results HA had excellent osteoconductivity and biocompatibility in vitro and in vivo compared to other biomaterials. HA grafts are suitable for milling and finishing, depending on the design. In computed tomography, porous HA is a more resorbable and more osteoconductive material than dense HA; however, its strength decreases exponentially with an increase in porosity. Conclusions Mechanical tests showed that HA scaffolds with pore diameters ranging from 400 to 1200 μm had compressive moduli and strength within the range of the human craniofacial trabecular bone. In conclusion, using CAD/CAM techniques for preparing HA scaffolds may increase graft stability and reduce surgical operating time.
Collapse
Affiliation(s)
- Umberto Garagiola
- Biomedical Surgical and Dental Sciences Department, Maxillo-Facial and Odontostomatology Unit, Fondazione Cà Granda IRCCS Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Roberto Grigolato
- Biomedical Surgical and Dental Sciences Department, Maxillo-Facial and Odontostomatology Unit, Fondazione Cà Granda IRCCS Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Rossano Soldo
- Biomedical Surgical and Dental Sciences Department, Maxillo-Facial and Odontostomatology Unit, Fondazione Cà Granda IRCCS Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Gianluca Bassi
- Biomedical Surgical and Dental Sciences Department, Maxillo-Facial and Odontostomatology Unit, Fondazione Cà Granda IRCCS Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Rachele Roncucci
- Biomedical Surgical and Dental Sciences Department, Maxillo-Facial and Odontostomatology Unit, Fondazione Cà Granda IRCCS Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | |
Collapse
|
4
|
Pallet N, Thervet E, Timsit MO. Angiogenic response following renal ischemia reperfusion injury: new players. Prog Urol 2015; 24 Suppl 1:S20-5. [PMID: 24950928 DOI: 10.1016/s1166-7087(14)70059-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ischemia-reperfusion (IR) injury can negatively influence the short- and long-term outcomes of kidney transplantation because it promotes acute tubular necrosis and tissue scarring and activates innate alloimmunity. The adaptive responses to IR are centrally involved in reducing tissue damage but can also be deleterious when they activate programmed cell death and inflammation. The HIF-1α-mediated angiogenic responses following IR at early and late stages are complex and poorly understood. The early stages of IR seem to be associated with an antiangiogenic response, whereas the hypoxia that follows IR at later stages may activate angiogenic factors such as vascular endothelial growth factor (VEGF) and may be beneficial by stabilizing the microvasculature and favoring local blood supply. In addition to HIF-1α, new players in angiogenesis, including mTOR and the unfolded protein response, may lead to innovative therapeutic strategies for treating patients with ischemia- and reperfusion-associated tissue inflammation and organ dysfunction.
Collapse
Affiliation(s)
- N Pallet
- Service de Biochimie, hôpital européen Georges Pompidou, Paris, France; Université Paris-Descartes, Sorbonne Paris Cité, Paris, France; INSERM U775, Centre universitaire des Saints-Pères, Paris, France.
| | - E Thervet
- Université Paris-Descartes, Sorbonne Paris Cité, Paris, France; Service de Néphrologie, hôpital européen Georges Pompidou, université Paris-Descartes, Paris, France
| | - M-O Timsit
- Université Paris-Descartes, Sorbonne Paris Cité, Paris, France; Service d'Urologie, hôpital européen Georges-Pompidou, université Paris-Descartes, Paris, France
| |
Collapse
|
5
|
Grandfield K, Palmquist A, Engqvist H. High-resolution three-dimensional probes of biomaterials and their interfaces. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:1337-1351. [PMID: 22349245 DOI: 10.1098/rsta.2011.0253] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Interfacial relationships between biomaterials and tissues strongly influence the success of implant materials and their long-term functionality. Owing to the inhomogeneity of biological tissues at an interface, in particular bone tissue, two-dimensional images often lack detail on the interfacial morphological complexity. Furthermore, the increasing use of nanotechnology in the design and production of biomaterials demands characterization techniques on a similar length scale. Electron tomography (ET) can meet these challenges by enabling high-resolution three-dimensional imaging of biomaterial interfaces. In this article, we review the fundamentals of ET and highlight its recent applications in probing the three-dimensional structure of bioceramics and their interfaces, with particular focus on the hydroxyapatite-bone interface, titanium dioxide-bone interface and a mesoporous titania coating for controlled drug release.
Collapse
Affiliation(s)
- Kathryn Grandfield
- Applied Materials Science, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, 75121 Uppsala, Sweden.
| | | | | |
Collapse
|
6
|
Grandfield K, Palmquist A, Gonçalves S, Taylor A, Taylor M, Emanuelsson L, Thomsen P, Engqvist H. Free form fabricated features on CoCr implants with and without hydroxyapatite coating in vivo: a comparative study of bone contact and bone growth induction. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:899-906. [PMID: 21305340 DOI: 10.1007/s10856-011-4253-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 01/29/2011] [Indexed: 05/21/2023]
Abstract
The current study evaluates the in vivo response to free form fabricated cobalt chromium (CoCr) implants with and without hydroxyapatite (HA) plasma sprayed coatings. The free form fabrication method allowed for integration of complicated pyramidal surface structures on the cylindrical implant. Implants were press fit into the tibial metaphysis of nine New Zealand white rabbits. Animals were sacrificed and implants were removed and embedded. Histological analysis, histomorphometry and electron microscopy studies were performed. Focused ion beam was used to prepare thin sections for high-resolution transmission electron microscopy examination. The fabricated features allowed for effective bone in-growth and firm fixation after 6 weeks. Transmission electron microscopy investigations revealed intimate bone-implant integration at the nanometre scale for the HA coated samples. In addition, histomorphometry revealed a significantly higher bone contact on HA coated implants compared to native CoCr implants. It is concluded that free form fabrication in combination with HA coating improves the early fixation in bone under experimental conditions.
Collapse
Affiliation(s)
- Kathryn Grandfield
- The Ångström Laboratory, Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
For tissue regeneration in medicine three-dimensional scaffolds with specific characteristics are required. A very important property is a high, interconnecting porosity to enable tissue ingrowth into the scaffold. Pore size distribution and pore geometry should be adapted to the respective tissue. Additionally, the scaffolds should have a basic stability for handling during implantation, which is provided by ceramic scaffolds. Various methods to produce such ceramic 3D scaffolds exist. In this paper conventional and new fabrication techniques are reviewed. Conventional methods cover the replica of synthetic and natural templates, the use of sacrificial templates and direct foaming. Rapid prototyping techniques are the new methods listed in this work. They include fused deposition modelling, robocasting and dispense-plotting, ink jet printing, stereolithography, 3D-printing, selective laser sintering/melting and a negative mould technique also involving rapid prototyping. The various fabrication methods are described and the characteristics of the resulting scaffolds are pointed out. Finally, the techniques are compared to find out their disadvantages and advantages.
Collapse
|
8
|
HE X, WANG J, XIAO F. SYNTHESIS OF GLYCOSYLATED THERMO-RESPONSIVE HYDROGELS AND THEIR INTERACTIONS WITH HepG2 CELLS. ACTA POLYM SIN 2009. [DOI: 10.3724/sp.j.1105.2009.01274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Thomsen P, Malmström J, Emanuelsson L, René M, Snis A. Electron beam-melted, free-form-fabricated titanium alloy implants: Material surface characterization and early bone response in rabbits. J Biomed Mater Res B Appl Biomater 2009; 90:35-44. [PMID: 18988273 DOI: 10.1002/jbm.b.31250] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Titanium-6aluminum-4vanadium implants (Ti6Al4V) were prepared by free-form-fabrication (FFF) and were used either as produced or after machining and compared with wrought machined Ti6Al4V. Auger electron spectroscopy (AES), depth profiles, and interferometry were used to analyze the surface properties. The tissue response after 6-weeks in rabbit femur and tibia was evaluated using light microscopy and histomorphometry. The results revealed that the bulk chemical and mechanical properties of the reference material and the electron beam-melted (EBM) material were within the ASTM F136 specifications. The as-produced EBM Ti6Al4V implants had increased surface roughness, thicker surface oxide and, with the exception of a higher content of Fe, a similar surface chemical composition compared with machined EBM Ti6Al4V and machined, wrought Ti6Al4V implants. The two latter implants did not differ with respect to surface properties. The general tissue response was similar for all three implant types. Histomorphometry revealed a high degree of bone-to-implant contact (no statistically significant differences) for all the three implant types. The present results show that the surface properties of EBM Ti6Al4V display biological short-term behavior in bone equal to that of conventional wrought titanium alloy. The opportunity to engineer geometric properties provides new and additional benefits which justify further studies.
Collapse
Affiliation(s)
- Peter Thomsen
- Department of Biomaterials, The Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|