1
|
Dewhurst RM, Scalzone A, Buckley J, Mattu C, Rankin KS, Gentile P, Ferreira AM. Development of Natural-Based Bone Cement for a Controlled Doxorubicin-Drug Release. Front Bioeng Biotechnol 2020; 8:754. [PMID: 32733869 PMCID: PMC7363953 DOI: 10.3389/fbioe.2020.00754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma (OS) accounts for 60% of all global bone cancer diagnoses. Intravenous administration of Doxorubicin Hydrochloride (DOXO) is the current form of OS treatment, however, systemic delivery has been linked to the onset of DOXO induced cardiomyopathy. Biomaterials including calcium phosphate cements (CPCs) and nanoparticles (NPs) have been tested as localized drug delivery scaffolds for OS cells. However, the tumor microenvironment is critical in cancer progression, with mesenchymal stem cells (MSCs) thought to promote OS metastasis and drug resistance. The extent of MSC assisted survival of OS cells in response to DOXO delivered by CPCs is unknown. In this study, we aimed at investigating the effect of DOXO release from a new formulation of calcium phosphate-based bone cement on the viability of OS cells cocultured with hMSC in vitro. NPs made of PLGA were loaded with DOXO and incorporated in the formulated bone cement to achieve local drug release. The inclusion of PLGA-DOXO NPs into CPCs was also proven to increase the levels of cytotoxicity of U2OS cells in mono- and coculture after 24 and 72 h. Our results demonstrate that a more effective localized DOXO delivery can be achieved via the use of CPCs loaded with PLGA-DOXO NPs compared to CPCs loaded with DOXO, by an observed reduction in metabolic activity of U2OS cells in indirect coculture with hMSCs. The presence of hMSCs offer a degree of DOXO resistance in U2OS cells cultured on PLGA-DOXO NP bone cements. The consideration of the tumor microenvironment via the indirect inclusion of hMSCs in this study can act as a starting point for future direct coculture and in vivo investigations.
Collapse
Affiliation(s)
- Rebecca Marie Dewhurst
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Annachiara Scalzone
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Buckley
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Clara Mattu
- Department of Mechanical and Aerospace, Politecnico di Torino, Turin, Italy
| | - Kenneth S Rankin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
2
|
Herten M, Zilkens C, Thorey F, Tassemeier T, Lensing-Höhn S, Fischer JC, Sager M, Krauspe R, Jäger M. Biomechanical Stability and Osteogenesis in a Tibial Bone Defect Treated by Autologous Ovine Cord Blood Cells-A Pilot Study. Molecules 2019; 24:molecules24020295. [PMID: 30650584 PMCID: PMC6358876 DOI: 10.3390/molecules24020295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to elucidate the impact of autologous umbilical cord blood cells (USSC) on bone regeneration and biomechanical stability in an ovine tibial bone defect. Ovine USSC were harvested and characterized. After 12 months, full-size 2.0 cm mid-diaphyseal bone defects were created and stabilized by an external fixateur containing a rigidity measuring device. Defects were filled with (i) autologous USSC on hydroxyapatite (HA) scaffold (test group), (ii) HA scaffold without cells (HA group), or (iii) left empty (control group). Biomechanical measures, standardized X-rays, and systemic response controls were performed regularly. After six months, bone regeneration was evaluated histomorphometrically and labeled USSC were tracked. In all groups, the torsion distance decreased over time, and radiographies showed comparable bone regeneration. The area of newly formed bone was 82.5 ± 5.5% in the control compared to 59.2 ± 13.0% in the test and 48.6 ± 2.9% in the HA group. Labeled cells could be detected in lymph nodes, liver and pancreas without any signs of tumor formation. Although biomechanical stability was reached earliest in the test group with autologous USSC on HA scaffold, the density of newly formed bone was superior in the control group without any bovine HA.
Collapse
Affiliation(s)
- Monika Herten
- Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Christoph Zilkens
- Orthopedic Department, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Fritz Thorey
- Center for Hip, Knee and Foot Surgery, Sports Traumatology Department, ATOS Hospital, 69115 Heidelberg, Germany.
| | - Tjark Tassemeier
- Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Sabine Lensing-Höhn
- Orthopedic Department, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Johannes C Fischer
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Martin Sager
- Animal Research Institute, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Rüdiger Krauspe
- Orthopedic Department, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Marcus Jäger
- Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany.
| |
Collapse
|
3
|
Zeng J, Lin J, Yao G, Kong K, Wang X. Effect of modified compound calcium phosphate cement on the differentiation and osteogenesis of bone mesenchymal stem cells. J Orthop Surg Res 2017; 12:102. [PMID: 28662665 PMCID: PMC5492459 DOI: 10.1186/s13018-017-0598-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/17/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The aim of this study is to evaluate the effect of self-invented compound calcium phosphate cement upon the proliferation and osteogenesis of bone mesenchymal stem cells (BMSCs). METHODS Four groups including traditional calcium phosphate cement, modified calcium phosphate cement, modified calcium phosphate cement plus bone morphogenetic protein (BMP), and control groups were established. The cell proliferation curve was delineated by MTT. The activity of BMSCs to synthesize alkaline phosphatase (AKP) was evaluated. The growth and invasion of BMSCs were observed. The expression levels of aggrecan, collagen I, collagen II, AKP, and OSX messenger RNA (mRNA) were measured by using RT-PCR. RESULTS Compared with other groups, the BMSCs in the modified calcium phosphate cement group presented with loose microstructure and the BMSCs closely attached to the vector margin. At 7 days after co-culture, the expression of AKP in the modified calcium phosphate cement plus BMP group was significantly upregulated compared with those in other groups. In the modified calcium phosphate cement group, the BMSCs properly proliferated on the surface of bone cement and invaded into the cement space. At 10 days, the expression levels of aggrecan, collagen I, collagen II, AKP, and OSX mRNA in the modified calcium phosphate cement and modified calcium phosphate cement plus BMP groups were significantly upregulated than those in other groups. CONCLUSIONS Modified compound calcium phosphate cement possesses excellent biocompatibility and osteogenic induction ability. Loose microstructure and large pore size create a favorable environment for BMSCs proliferation and vascular invasion, as an ideal vector for releasing BMP cytokines to mediate the differentiation and osteogenesis of BMSCs.
Collapse
Affiliation(s)
- Jican Zeng
- Department of Spine Surgery, The Second Affiliated Hospital to Shantou University Medical College, The DongXia North Road, Shantou, 515041 Guangdong China
| | - Jiazhong Lin
- Department of Spine Surgery, The Second Affiliated Hospital to Shantou University Medical College, The DongXia North Road, Shantou, 515041 Guangdong China
- The Traumatology & Orthopedics Department, The People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guanfeng Yao
- Department of Spine Surgery, The Second Affiliated Hospital to Shantou University Medical College, The DongXia North Road, Shantou, 515041 Guangdong China
| | - Kangmei Kong
- Department of Spine Surgery, The Second Affiliated Hospital to Shantou University Medical College, The DongXia North Road, Shantou, 515041 Guangdong China
| | - Xinjia Wang
- Department of Spine Surgery, The Second Affiliated Hospital to Shantou University Medical College, The DongXia North Road, Shantou, 515041 Guangdong China
| |
Collapse
|
4
|
Hutchens SA, Campion C, Assad M, Chagnon M, Hing KA. Efficacy of silicate-substituted calcium phosphate with enhanced strut porosity as a standalone bone graft substitute and autograft extender in an ovine distal femoral critical defect model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:20. [PMID: 26684617 DOI: 10.1007/s10856-015-5559-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/14/2015] [Indexed: 06/05/2023]
Abstract
A synthetic bone graft substitute consisting of silicate-substituted calcium phosphate with increased strut porosity (SiCaP EP) was evaluated in an ovine distal femoral critical sized metaphyseal defect as a standalone bone graft, as an autologous iliac crest bone graft (ICBG) extender (SiCaP EP/ICBG), and when mixed with bone marrow aspirate (SiCaP EP/BMA). Defects were evaluated after 4, 8, and 12 weeks with radiography, decalcified paraffin-embedded histopathology, non-decalcified resin-embedded histomorphometry, and mechanical indentation testing. All test groups exhibited excellent biocompatibility and osseous healing as evidenced by an initial mild inflammatory response followed by neovascularization, bone growth, and marrow infiltration throughout all SiCaP EP-treated defects. SiCaP EP/ICBG produced more bone at early time points, while all groups produced similar amounts of bone at later time points. SiCaP EP/ICBG likewise showed more favorable mechanical properties at early time points, but was equivalent to SiCaP EP and SiCaP EP/BMA at later time points. This study demonstrates that SiCaP EP is efficacious as a standalone bone graft substitute, mixed with BMA, and as an autograft extender.
Collapse
Affiliation(s)
- Stacy A Hutchens
- Baxter Healthcare Corporation, One Baxter Pkwy, Deerfield, IL, 60015, USA.
| | - Charlie Campion
- Baxter Healthcare Corporation, One Baxter Pkwy, Deerfield, IL, 60015, USA
| | - Michel Assad
- Orthopedics and Biomaterials Laboratory, AccelLAB Inc., Boisbriand, QC, Canada
| | - Madeleine Chagnon
- Orthopedics and Biomaterials Laboratory, AccelLAB Inc., Boisbriand, QC, Canada
| | - Karin A Hing
- Institute of Bioengineering, School of Engineering and Materials Science at Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
5
|
Tendon-to-bone healing using an injectable calcium phosphate cement combined with bone xenograft/BMP composite. Biomaterials 2013; 34:9926-36. [DOI: 10.1016/j.biomaterials.2013.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/04/2013] [Indexed: 12/26/2022]
|
6
|
Bongio M, van den Beucken JJJP, Leeuwenburgh SCG, Jansen JA. Preclinical evaluation of injectable bone substitute materials. J Tissue Eng Regen Med 2012; 9:191-209. [DOI: 10.1002/term.1637] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 07/25/2012] [Accepted: 09/27/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Matilde Bongio
- Department of Biomaterials; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | | | | | - John A. Jansen
- Department of Biomaterials; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| |
Collapse
|
7
|
Zhang X, Zhu L, Lv H, Cao Y, Liu Y, Xu Y, Ye W, Wang J. Repair of rabbit femoral condyle bone defects with injectable nanohydroxyapatite/chitosan composites. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1941-1949. [PMID: 22555503 DOI: 10.1007/s10856-012-4662-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 04/24/2012] [Indexed: 05/31/2023]
Abstract
Repair of massive bone loss remains a challenge to the orthopaedic surgeons. Autologous and allogenic bone grafts are choice for bone reconstructive surgery, but limited availability, risks of transmittable diseases and inconsistent clinical performances have prompted the development of tissue engineering. In the present work, the bone regeneration potential of nanohydroxyapatite/chitosan composite scaffolds were compared with pure chitosan scaffolds when implanted into segmental bone defects in rabbits. Critical size bone defects (6 mm diameter, 10 mm length) were created in the left femoral condyles of 43 adult New Zealand white rabbits. The femoral condyle bone defects were repaired by nanohydroxyapatite/chitosan compositions, pure chitosan or left empty separately. Defect-bridging was detected by plain radiograph and quantitative computer tomography at eight and 12 weeks after surgery. Tissue samples were collected for gross view and histological examination to determine the extent of new bone formation. Eight weeks after surgery, more irregular osteon formation was observed in the group treated with nanohydroxyapatite/chitosan composites compared with those treated with pure chitosan. 12 weeks after surgery, complete healing of the segmental bone defect was observed in the nanohydroxyapatite/chitosan-group, while the defect was still visible in the chitosan-group, although the depth of the defect had diminished. These observations suggest that the injectable nanohydroxyapatite/chitosan scaffolds are potential candidate materials for regeneration of bone loss.
Collapse
Affiliation(s)
- Xibing Zhang
- Department of Orthopaedics, Zhu Jiang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Yang JC, Lee SY, Chen CA, Lin CT, Chen CC, Huang HM. The role of the calmodulin-dependent pathway in static magnetic field-induced mechanotransduction. Bioelectromagnetics 2010; 31:255-61. [PMID: 19953573 DOI: 10.1002/bem.20559] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
While the effects of static magnetic fields (SMFs) on osteoblastic differentiation are well demonstrated, the mechanotransduction pathways of SMFs are still unclear. The aim of this study was to explore the role of calmodulin in the biophysical effects of SMFs on osteoblastic cells. MG63 cells were exposed to a 0.4 T SMF. The expression of phosphodiesterase RNA in the cytoplasm was tested using real-time polymerase chain reaction. The differentiation of the cells was assessed by detecting changes in alkaline phosphatase activity. The role of calmodulin antagonist W-7 was used to evaluate alterations in osteoblastic proliferation and differentiation after the SMF simulations. Our results showed that SMF exposure increased alkaline phosphatase activity and phosphodiesterase 1C gene expression in MG63 cells. Addition of W-7 significantly inhibited the SMF-induced cellular response. We suggest that one possible mechanism by which SMFs affects osteoblastic maturation is through a calmodulin-dependent mechanotransduction pathway.
Collapse
Affiliation(s)
- Jen-Chang Yang
- Graduate Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|