1
|
Drobota M, Vlad S, Gradinaru LM, Bargan A, Radu I, Butnaru M, Rîmbu CM, Ciobanu RC, Aflori M. Composite Materials Based on Gelatin and Iron Oxide Nanoparticles for MRI Accuracy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3479. [PMID: 35629506 PMCID: PMC9147670 DOI: 10.3390/ma15103479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023]
Abstract
The majority of recent studies have focused on obtaining MRI materials for internal use. However, this study focuses on a straightforward method for preparing gelatin-based materials with iron oxide nanoparticles (G-Fe2O3 and G-Fe3O4) for external use. The newly obtained materials must be precisely tuned to match the requirements and usage situation because they will be in close touch with human/animal skin. The biocompatible structures formed by gelatin, tannic acid, and iron oxide nanoparticles were investigated by using FTIR spectroscopy, SEM-EDAX analysis, and contact angle methods. The physico-chemical properties were obtained by using mechanical investigations, dynamic vapor sorption analysis, and bulk magnetic determination. The size and shape of iron oxide nanoparticles dictates the magnetic behavior of the gelatin-based samples. The magnetization curves revealed a typical S-shaped superparamagnetic behavior which is evidence of improved MRI image accuracy. In addition, the MTT assay was used to demonstrate the non-toxicity of the samples, and the antibacterial test confirmed satisfactory findings for all G-based materials.
Collapse
Affiliation(s)
- Mioara Drobota
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. GhicaVoda, 41A, 700487 Iasi, Romania; (S.V.); (L.M.G.); (A.B.); (M.B.)
| | - Stelian Vlad
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. GhicaVoda, 41A, 700487 Iasi, Romania; (S.V.); (L.M.G.); (A.B.); (M.B.)
| | - Luiza Madalina Gradinaru
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. GhicaVoda, 41A, 700487 Iasi, Romania; (S.V.); (L.M.G.); (A.B.); (M.B.)
| | - Alexandra Bargan
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. GhicaVoda, 41A, 700487 Iasi, Romania; (S.V.); (L.M.G.); (A.B.); (M.B.)
| | - Iulian Radu
- Department of Surgery, Regional Institute of Oncology, I-st Surgical Oncology, “Grigore T. Popa” University of Medicine and Pharmacy, 700483 Iasi, Romania;
| | - Maria Butnaru
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. GhicaVoda, 41A, 700487 Iasi, Romania; (S.V.); (L.M.G.); (A.B.); (M.B.)
- Department of Biomedical Sciences, “Grigore T. Popa” University of Medicine and Pharmacy, Kogalniceanu Street, 9-13, 700115 Iasi, Romania
| | - Cristina Mihaela Rîmbu
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| | - Romeo Cristian Ciobanu
- SC All Green SRL, I. Bacalu Street, 5, 700029 Iasi, Romania;
- Electrical Engineering Faculty, “Gheorghe Asachi” Technical University of Iasi, Dimitrie Mangeron Bd., 67, 700050 Iasi, Romania
| | - Magdalena Aflori
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. GhicaVoda, 41A, 700487 Iasi, Romania; (S.V.); (L.M.G.); (A.B.); (M.B.)
| |
Collapse
|
2
|
Mechanical Characterization and In Vitro Assay of Biocompatible Titanium Alloys. MICROMACHINES 2022; 13:mi13030430. [PMID: 35334722 PMCID: PMC8953245 DOI: 10.3390/mi13030430] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/08/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Metals that come into contact with the body can cause reactions in the body, so biomaterials must be tested to avoid side effects. Mo, Zr, and Ta are non-toxic elements; alloyed with titanium, they have very good biocompatibility properties and mechanical properties. The paper aims to study an original Ti20Mo7ZrxTa system (5, 10, 15 wt %) from a mechanical and in vitro biocompatibility point of view. Alloys were examined by optical microstructure, tensile strength, fractographic analysis, and in vitro assay. The obtained results indicate very good mechanical and biological properties, recommending them for future orthopedic medical applications.
Collapse
|
3
|
Munteanu C, Vlad DM, Sindilar EV, Istrate B, Butnaru M, Pasca SA, Nastasa RO, Mihai I, Burlea SL. Novel Mg-0.5Ca-xMn Biodegradable Alloys Intended for Orthopedic Application: An In Vitro and In Vivo Study. MATERIALS 2021; 14:ma14237262. [PMID: 34885417 PMCID: PMC8658333 DOI: 10.3390/ma14237262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 02/01/2023]
Abstract
Mg-based biodegradable materials, used for medical applications, have been extensively studied in the past decades. The in vitro cytocompatibility study showed that the proliferation and viability (as assessed by quantitative MTT-assay-3-(4,5-dimethyltiazol-2-yl)-2,5-diphenyl tetrazolium bromide) were not negatively affected with time by the addition of Mn as an alloying element. In this sense, it should be put forward that the studied alloys don't have a cytotoxic effect according to the standard ISO 10993-5, i.e., the level of the cells' viability (cultured with the studied experimental alloys) attained both after 1 day and 5 days was over 82% (i.e., 82, 43-89, 65%). Furthermore, the fibroblastic cells showed variable morphology (evidenced by fluorescence microscopy) related to the alloy sample's proximity (i.e., related to the variation on the Ca, Mg, and Mn ionic concentration as a result of alloy degradation). It should be mentioned that the cells presented a polygonal morphology with large cytoplasmic processes in the vicinity of the alloy's samples, and a bipolar morphology in the remote region of the wells. Moreover, the in vitro results seem to indicate that only 0.5% Mn is sufficient to improve the chemical stability, and thus the cytocompatibility; from this point of view, it could provide some flexibility in choosing the right alloy for a specific medical application, depending on the specific parameters of each alloy, such as its mechanical properties and corrosion resistance. In order to assess the in vivo compatibility of each concentration of alloy, the pieces were implanted in four rats, in two distinct body regions, i.e., the lumbar and thigh. The body's reaction was followed over time, 60 days, both by general clinical examinations considering macroscopic changes, and by laboratory examinations, which revealed macroscopic and microscopic changes using X-rays, CT(Computed Tomography), histology exams and SEM (Scanning Electron Microscopy). In both anatomical regions, for each of the tested alloys, deformations were observed, i.e., a local reaction of different intensities, starting the day after surgery. The release of hydrogen gas that forms during Mg alloy degradation occurred immediately after implantation in all five of the groups examined, which did not affect the normal functionality of the tissues surrounding the implants. Imaging examinations (radiological and CT) revealed the presence of the alloy and the volume of hydrogen gas in the lumbar and femoral region in varying amounts. The biodegradable alloys in the Mg-Ca-Mn system have great potential to be used in orthopedic applications.
Collapse
Affiliation(s)
- Corneliu Munteanu
- Mechanical Engineering Department, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (C.M.); (R.O.N.)
- Technical Sciences Academy of Romania, 26 Dacia Blvd., 030167 Bucharest, Romania
| | - Daniela Maria Vlad
- Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy from Iasi, 9-13 Kogălniceanu Str, 700454 Iasi, Romania;
- TRANSCEND Research Centre, Regional Institute of Oncology, Str. G-ral Henri Mathias Berthelot 2-4, 700483 Iasi, Romania
- Correspondence: (D.M.V.); (E.-V.S.); (B.I.)
| | - Eusebiu-Viorel Sindilar
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 8, Mihail Sadoveanu Alley, 700490 Iasi, Romania; (S.A.P.); (I.M.)
- Correspondence: (D.M.V.); (E.-V.S.); (B.I.)
| | - Bogdan Istrate
- Mechanical Engineering Department, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (C.M.); (R.O.N.)
- Correspondence: (D.M.V.); (E.-V.S.); (B.I.)
| | - Maria Butnaru
- Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy from Iasi, 9-13 Kogălniceanu Str, 700454 Iasi, Romania;
| | - Sorin Aurelian Pasca
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 8, Mihail Sadoveanu Alley, 700490 Iasi, Romania; (S.A.P.); (I.M.)
| | - Roxana Oana Nastasa
- Mechanical Engineering Department, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (C.M.); (R.O.N.)
| | - Iuliana Mihai
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 8, Mihail Sadoveanu Alley, 700490 Iasi, Romania; (S.A.P.); (I.M.)
| | - Stefan-Lucian Burlea
- Faculty of Dentistry, “Grigore T. Popa” University of Medicine and Pharmacy from Iasi, 9-13 Kogălniceanu Str, 700454 Iasi, Romania;
| |
Collapse
|
4
|
Microstructural, Electrochemical and In Vitro Analysis of Mg-0.5Ca-xGd Biodegradable Alloys. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11030981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The subject of Mg-based biodegradable materials, used for medical applications, has been extensively studied throughout the years. It is a known fact that alloying Mg with biocompatible and non-toxic elements improves the biodegradability of the alloys that are being used in the field of surgical applications. The aim of this research is to investigate the aspects concerning the microstructure, electrochemical response (corrosion resistance) and in vitro cytocompatibility of a new experimental Mg-based biodegradable alloy—Mg–0.5%Ca with controlled addition of Gd as follows: 0.5, 1.0, 1.5, 2.0 and 3.0 wt.%—in order to establish improved biocompatibility with the human hard and soft tissues at a stable biodegradable rate. For this purpose, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), light microscopy (LM) and X-ray diffraction (XRD) were used for determining the microstructure and chemical composition of the studied alloy and the linear polarization resistance (LPR) method was used to calculate the corrosion rate for the biodegradability rate assessment. The cellular response was evaluated using the 3-(4,5-dimethyltiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test followed by fluorescence microscopy observation. The research led to the discovery of a dendritic α-Mg solid solution, as well as a lamellar Mg2Ca and a Mg5Gd intermetallic compound. The in vivo tests revealed 73–80% viability of the cells registered at 3 days and between 77 and 100% for 5 days, a fact that leads us to believe that the experimental studied alloys do not have a cytotoxic character and are suitable for medical applications.
Collapse
|
5
|
Scialla S, Palazzo B, Sannino A, Verri T, Gervaso F, Barca A. Evidence of Modular Responsiveness of Osteoblast-Like Cells Exposed to Hydroxyapatite-Containing Magnetic Nanostructures. BIOLOGY 2020; 9:biology9110357. [PMID: 33113830 PMCID: PMC7692879 DOI: 10.3390/biology9110357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/24/2022]
Abstract
Simple Summary Current research on nanocomposite materials with tailored physical–chemical properties is increasingly advancing in biomedical applications for bone regeneration. In this study, occurrence of differential responsiveness to dextran-grafted iron oxide (DM) nanoparticles and to their hybrid nano-hydroxyapatite (DM/n-HA) counterpart was investigated in human-derived, osteoblast-like cells. Sensitivity of cells in the presence of DMs or DM/n-HAs was evaluated in terms of cytoskeletal dynamics. Remarkably, it was shown that effects triggered by the DM are no more retained when DM is embedded onto DM/n-HA nanocomposites. In parallel, analyses on the expression of genes involved in (a) intracellular signaling pathways triggered by ligands or cell interactions with elements of the extracellular matrix, (b) modulation of processes such as cell cycle arrest, apoptosis, senescence, DNA repair, metabolism changes, and (c) iron homeostasis and absorption through cell membranes, indicated that the DM/n-HA-treated cells retain tracts of physiological responsiveness unlike DM-treated cells. Overall, a shielding effect by the n-HA was assumed (masking the DM’s cytotoxicity), and a modular biomimicry of the DM/n-HA nanocomposites. On these bases, the biocompatibility of n-HA associated to DM’s magnetic responsiveness offer a combination of structural/functional features of these nano-tools for bone tissue engineering, for finely acting within physiological ranges. Abstract The development of nanocomposites with tailored physical–chemical properties, such as nanoparticles containing magnetic iron oxides for manipulating cellular events at distance, implies exciting prospects in biomedical applications for bone tissue regeneration. In this context, this study aims to emphasize the occurrence of differential responsiveness in osteoblast-like cells to different nanocomposites with diverse features: dextran-grafted iron oxide (DM) nanoparticles and their hybrid nano-hydroxyapatite (DM/n-HA) counterpart. Here, responsiveness of cells in the presence of DMs or DM/n-HAs was evaluated in terms of cytoskeletal features. We observed that effects triggered by the DM are no more retained when DM is embedded onto the DM/n-HA nanocomposites. Also, analysis of mRNA level variations of the focal adhesion kinase (FAK), P53 and SLC11A2/DMT1 human genes showed that the DM/n-HA-treated cells retain tracts of physiological responsiveness compared to the DM-treated cells. Overall, a shielding effect by the n-HA component can be assumed, masking the DM’s cytotoxic potential, also hinting a modular biomimicry of the nanocomposites respect to the physiological responses of osteoblast-like cells. In this view, the biocompatibility of n-HA together with the magnetic responsiveness of DMs represent an optimized combination of structural with functional features of the DM/n-HA nano-tools for bone tissue engineering, for finely acting within physiological ranges.
Collapse
Affiliation(s)
- Stefania Scialla
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (B.P.); (A.S.); (F.G.)
- Institute of Polymers, Composites and Biomaterials—National Research Council, Viale J. F. Kennedy, 54 (Mostra d’Oltremare Pad.20), 80125 Naples, Italy
- Correspondence: (S.S.); (A.B.)
| | - Barbara Palazzo
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (B.P.); (A.S.); (F.G.)
- ENEA, Division for Sustainable Materials—Research Centre of Brindisi, 72100 Brindisi, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (B.P.); (A.S.); (F.G.)
| | - Tiziano Verri
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy;
| | - Francesca Gervaso
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (B.P.); (A.S.); (F.G.)
- CNR Nanotec—Institute of Nanotechnology, 73100 Lecce, Italy
| | - Amilcare Barca
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy;
- Correspondence: (S.S.); (A.B.)
| |
Collapse
|
6
|
Istrate B, Munteanu C, Lupescu S, Chelariu R, Vlad MD, Vizureanu P. Electrochemical Analysis and In Vitro Assay of Mg-0.5Ca-xY Biodegradable Alloys. MATERIALS 2020; 13:ma13143082. [PMID: 32664267 PMCID: PMC7411681 DOI: 10.3390/ma13143082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/22/2020] [Accepted: 07/04/2020] [Indexed: 11/16/2022]
Abstract
In recent years, biodegradable Mg-based materials have been increasingly studied to be used in the medical industry and beyond. A way to improve biodegradability rate in sync with the healing process of the natural human bone is to alloy Mg with other biocompatible elements. The aim of this research was to improve biodegradability rate and biocompatibility of Mg-0.5Ca alloy through addition of Y in 0.5/1.0/1.5/2.0/3.0wt.%. To characterize the chemical composition and microstructure of experimental Mg alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), light microscopy (LM), and X-ray diffraction (XRD) were used. The linear polarization resistance (LPR) method was used to calculate corrosion rate as a measure of biodegradability rate. The cytocompatibility was evaluated by MTT assay (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide) and fluorescence microscopy. Depending on chemical composition, the dendritic α-Mg solid solution, as well as lamellar Mg2Ca and Mg24Y5 intermetallic compounds were found. The lower biodegradability rates were found for Mg-0.5Ca-2.0Y and Mg-0.5Ca-3.0Y which have correlated with values of cell viability. The addition of 2-3 wt.%Y in the Mg-0.5Ca alloy improved both the biodegradability rate and cytocompatibility behavior.
Collapse
Affiliation(s)
- Bogdan Istrate
- Mechanical Engineering Department, Gheorghe Asachi University of Iasi, 6 D. Mangeron Blvd, 700050 Iasi, Romania;
| | - Corneliu Munteanu
- Mechanical Engineering Department, Gheorghe Asachi University of Iasi, 6 D. Mangeron Blvd, 700050 Iasi, Romania;
- Correspondence: (C.M.); (S.L.); Tel.: +40-744-647-991 (C.M.); +40-753-867-926 (S.L.)
| | - Stefan Lupescu
- Mechanical Engineering Department, Gheorghe Asachi University of Iasi, 6 D. Mangeron Blvd, 700050 Iasi, Romania;
- Correspondence: (C.M.); (S.L.); Tel.: +40-744-647-991 (C.M.); +40-753-867-926 (S.L.)
| | - Romeu Chelariu
- Faculty of Material Science and Engineering Department, Gheorghe Asachi University of Iasi, 41 DimitrieMangeron str., 700050 Iasi, Romania; (R.C.); (P.V.)
| | - Maria Daniela Vlad
- Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy from Iasi, 9-13 Kogălniceanu Str, 700454 Iasi, Romania;
| | - Petrică Vizureanu
- Faculty of Material Science and Engineering Department, Gheorghe Asachi University of Iasi, 41 DimitrieMangeron str., 700050 Iasi, Romania; (R.C.); (P.V.)
- Romanian Inventors Forum, Sf. P. Movila 3, 700089 Iasi, Romania
| |
Collapse
|
7
|
Vlad MD, Fernández Aguado E, Gómez González S, Ivanov IC, Şindilar EV, Poeată I, Iencean AŞ, Butnaru M, Avădănei ER, López López J. Novel titanium-apatite hybrid scaffolds with spongy bone-like micro architecture intended for spinal application: In vitro and in vivo study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110658. [PMID: 32204086 DOI: 10.1016/j.msec.2020.110658] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Titanium alloy scaffolds with novel interconnected and non-periodic porous bone-like micro architecture were 3D-printed and filled with hydroxyapatite bioactive matrix. These novel metallic-ceramic hybrid scaffolds were tested in vitro by direct-contact osteoblast cell cultures for cell adhesion, proliferation, morphology and gene expression of several key osteogenic markers. The scaffolds were also evaluated in vivo by implanting them on transverse and spinous processes of sheep's vertebras and subsequent histology study. The in vitro results showed that: (a) cell adhesion, proliferation and viability were not negatively affected with time by compositional factors (quantitative MTT-assay); (b) the osteoblastic cells were able to adhere and to attain normal morphology (fluorescence microscopy); (c) the studied samples had the ability to promote and sustain the osteogenic differentiation, matrix maturation and mineralization in vitro (real-time quantitative PCR and mineralized matrix production staining). Additionally, the in vivo results showed that the hybrid scaffolds had greater infiltration, with fully mineralized bone after 6 months, than the titanium scaffolds without bioactive matrix. In conclusion, these novel hybrid scaffolds could be an alternative to the actual spinal fusion devices, due to their proved osteogenic performance (i.e. osteoinductive and osteoconductive behaviour), if further dimensional and biomechanical optimization is performed.
Collapse
Affiliation(s)
- Maria Daniela Vlad
- Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy from Iasi, Str. Kogălniceanu 9-13, 700454 Iasi, Romania; TRANSCEND Research Centre, Regional Institute of Oncology, Str. G-ral Henri Mathias Berthelot 2-4, 700483 Iași, Romania.
| | - Enrique Fernández Aguado
- Research Group of Interacting Surfaces in Bioengineering and Materials Science (InSup), Technical University of Catalonia (UPC), Avda. Diagonal 647, 08028 Barcelona, Spain
| | - Sergio Gómez González
- Research Group of Interacting Surfaces in Bioengineering and Materials Science (InSup), Technical University of Catalonia (UPC), Avda. Diagonal 647, 08028 Barcelona, Spain
| | - Iuliu Cristian Ivanov
- TRANSCEND Research Centre, Regional Institute of Oncology, Str. G-ral Henri Mathias Berthelot 2-4, 700483 Iași, Romania
| | - Eusebiu Viorel Şindilar
- Faculty of Veterinary Medicine, University "Ion Ionescu de la Brad" of Agricultural Sciences and Veterinary Medicine, Str. Aleea M. Sadoveanu, no. 8, 700489 Iasi, Romania
| | - Ion Poeată
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy from Iasi, Str. Universității no. 16, 700115 Iasi, Romania
| | - Andrei Ştefan Iencean
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy from Iasi, Str. Universității no. 16, 700115 Iasi, Romania
| | - Maria Butnaru
- Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy from Iasi, Str. Kogălniceanu 9-13, 700454 Iasi, Romania
| | - Elena Roxana Avădănei
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy from Iasi, Str. Universității no. 16, 700115 Iasi, Romania
| | - José López López
- Research Group of Interacting Surfaces in Bioengineering and Materials Science (InSup), Technical University of Catalonia (UPC), Avda. Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
8
|
Self-Setting Calcium Orthophosphate (CaPO4) Formulations. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-5975-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Bertol LS, Schabbach R, Dos Santos LAL. Dimensional evaluation of patient-specific 3D printing using calcium phosphate cement for craniofacial bone reconstruction. J Biomater Appl 2016; 31:799-806. [PMID: 27913653 DOI: 10.1177/0885328216682672] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The 3D printing process is highlighted nowadays as a possibility to generate individual parts with complex geometries. Moreover, the development of 3D printing hardware, software and parameters permits the manufacture of parts that can be not only used as prototypes, but are also made from materials that are suitable for implantation. In this way, this study investigates the process involved in the production of patient-specific craniofacial implants using calcium phosphate cement, and its dimensional accuracy. The implants were previously generated in a computer-aided design environment based on the patient's tomographic data. The fabrication of the implants was carried out in a commercial 3D powder printing system using alfa-tricalcium phosphate powder and an aqueous solution of Na2HPO4 as a binder. The fit of the 3D printed implants was measured by three-dimensional laser scanning and by checking the right adjustment to the patient's anatomical biomodel. The printed parts presented a good degree of fitting and accuracy.
Collapse
Affiliation(s)
- Liciane Sabadin Bertol
- Universidade Federal do Rio Grande do Sul, Laboratorio de Biomateriais, Porto Alegre, Brazil
| | - Rodrigo Schabbach
- Universidade Federal do Rio Grande do Sul, Laboratorio de Biomateriais, Porto Alegre, Brazil
| | | |
Collapse
|
10
|
Manchón A, Hamdan Alkhraisat M, Rueda-Rodriguez C, Prados-Frutos JC, Torres J, Lucas-Aparicio J, Ewald A, Gbureck U, López-Cabarcos E. A new iron calcium phosphate material to improve the osteoconductive properties of a biodegradable ceramic: a study in rabbit calvaria. ACTA ACUST UNITED AC 2015; 10:055012. [PMID: 26481113 DOI: 10.1088/1748-6041/10/5/055012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
β-tricalcium phosphate (β-TCP) is an osteoconductive and biodegradable material used in bone regeneration procedures, while iron has been suggested as a tool to improve the biological performance of calcium phosphate-based materials. However, the mechanisms of interaction between these materials and human cells are not fully understood. In order to clarify this relationship, we have studied the iron role in β-TCP ceramics. Iron-containing β-TCPs were prepared by replacing CaCO3 with C6H5FeO7 at different molar ratios. X-ray diffraction analysis indicated the occurrence of β-TCP as the sole phase in the pure β-TCP and iron-containing ceramics. The incorporation of iron ions in the β-TCP lattice decreased the specific surface area as the pore size was shifted toward meso- and/or macropores. Furthermore, the human osteoblastlike cell line MG-63 was cultured onto the ceramics to determine cell proliferation and viability, and it was observed that the iron-β-TCP ceramics have better cytocompatibility than pure β-TCP. Finally, in vivo assays were performed using rabbit calvaria as a bone model. The scaffolds were implanted for 8 and 12 weeks in the defects created in the skullcap with pure β-TCP as the control. The in vivo behavior, in terms of new bone formed, degradation, and residual graft material were investigated using sequential histological evaluations and histomorphometric analysis. The in vivo implantation of the ceramics showed enhanced bone tissue formation and scaffold degradation for iron-β-TCPs. Thus, iron appears to be a useful tool to enhance the osteoconductive properties of calcium phosphate ceramics.
Collapse
Affiliation(s)
- Angel Manchón
- Department of Stomatology, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Alcorcon-Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Effects of adding resorbable phosphate glass fibres and PLA to calcium phosphate bone cements. J Appl Biomater Funct Mater 2014; 12:203-9. [PMID: 24744228 DOI: 10.5301/jabfm.5000167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2013] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Calcium phosphate cements (CPCs), due to their biocompatibility and degradation properties, are being widely investigated as a replacement to more commonly used polymethylmethacrylate (PMMA) for vertebroplasty. CPCs have shown the potential to be replaced by host bone tissue during the healing/remodelling process. However, brittleness and comparatively low strength restrict the use of CPC in load-bearing applications. Although porous CPC can integrate with bone over time, slow degradation profiles and poor interconnectivity between pores restricts osseointegration to the top layer of CPC only. METHODS Polylactic acid (PLA) and phosphate glass fibres (PGFs) were incorporated in a CPC matrix to overcome the problem of inherent brittleness and limited osseointegration. RESULTS Incorporation of PLA and PGFs within CPC was successful in achieving a much less brittle CPC matrix without affecting the mechanical properties of CPC. The area under the stress-strain curve showed that the total energy to failure of the CPC hybrid was significantly greater than that of the CPC control. CONCLUSIONS The methodology adopted here to add PLA within the CPC matrix may also allow for incorporation of PLA cross-linked biochemicals. Micrographic studies revealed that it was possible to confer control over pore size, shape and interconnectivity without negatively affecting the mechanical properties of the cement. This tailorable porosity could potentially lead to better osseointegration within CPC.
Collapse
|
12
|
Dorozhkin SV. Self-setting calcium orthophosphate formulations. J Funct Biomater 2013; 4:209-311. [PMID: 24956191 PMCID: PMC4030932 DOI: 10.3390/jfb4040209] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 01/08/2023] Open
Abstract
In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are bioactive and biodegradable grafting bioceramics in the form of a powder and a liquid. After mixing, both phases form pastes, which set and harden forming either a non-stoichiometric calcium deficient hydroxyapatite or brushite. Since both of them are remarkably biocompartible, bioresorbable and osteoconductive, self-setting calcium orthophosphate formulations appear to be promising bioceramics for bone grafting. Furthermore, such formulations possess excellent molding capabilities, easy manipulation and nearly perfect adaptation to the complex shapes of bone defects, followed by gradual bioresorption and new bone formation. In addition, reinforced formulations have been introduced, which might be described as calcium orthophosphate concretes. The discovery of self-setting properties opened up a new era in the medical application of calcium orthophosphates and many commercial trademarks have been introduced as a result. Currently such formulations are widely used as synthetic bone grafts, with several advantages, such as pourability and injectability. Moreover, their low-temperature setting reactions and intrinsic porosity allow loading by drugs, biomolecules and even cells for tissue engineering purposes. In this review, an insight into the self-setting calcium orthophosphate formulations, as excellent bioceramics suitable for both dental and bone grafting applications, has been provided.
Collapse
|
13
|
Boanini E, Gazzano M, Bigi A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 2010; 6:1882-94. [PMID: 20040384 DOI: 10.1016/j.actbio.2009.12.041] [Citation(s) in RCA: 365] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/16/2009] [Accepted: 12/21/2009] [Indexed: 11/29/2022]
Abstract
Ionic substitutions have been proposed as a tool to improve the biological performance of calcium phosphate based materials. This review provides an overview of the recent results achieved on ion-substituted calcium phosphates prepared at low temperature, i.e. by direct synthesis in aqueous medium or through hydrolysis of more soluble calcium phosphates. Particular attention is focused on several ions, including Si, Sr, Mg, Zn and Mn, which are attracting increasing interest for their possible biological role, and on the recent trends and developments in the applications of ion-substituted calcium phosphates in the biomedical field.
Collapse
Affiliation(s)
- E Boanini
- Department of Chemistry G. Ciamician, University of Bologna, 40126 Bologna, Italy
| | | | | |
Collapse
|
14
|
Abstract
In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA) or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone), calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.
Collapse
|