1
|
Zorzetto L, Brambilla P, Marcello E, Bloise N, De Gregori M, Cobianchi L, Peloso A, Allegri M, Visai L, Petrini P. From micro- to nanostructured implantable device for local anesthetic delivery. Int J Nanomedicine 2016; 11:2695-709. [PMID: 27354799 PMCID: PMC4907738 DOI: 10.2147/ijn.s99028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Local anesthetics block the transmission of painful stimuli to the brain by acting on ion channels of nociceptor fibers, and find application in the management of acute and chronic pain. Despite the key role they play in modern medicine, their cardio and neurotoxicity (together with their short half-life) stress the need for developing implantable devices for tailored local drug release, with the aim of counterbalancing their side effects and prolonging their pharmacological activity. This review discusses the evolution of the physical forms of local anesthetic delivery systems during the past decades. Depending on the use of different biocompatible materials (degradable polyesters, thermosensitive hydrogels, and liposomes and hydrogels from natural polymers) and manufacturing processes, these systems can be classified as films or micro- or nanostructured devices. We analyze and summarize the production techniques according to this classification, focusing on their relative advantages and disadvantages. The most relevant trend reported in this work highlights the effort of moving from microstructured to nanostructured systems, with the aim of reaching a scale comparable to the biological environment. Improved intracellular penetration compared to microstructured systems, indeed, provides specific drug absorption into the targeted tissue and can lead to an enhancement of its bioavailability and retention time. Nanostructured systems are realized by the modification of existing manufacturing processes (interfacial deposition and nanoprecipitation for degradable polyester particles and high- or low-temperature homogenization for liposomes) or development of novel strategies (electrospun matrices and nanogels). The high surface-to-volume ratio that characterizes nanostructured devices often leads to a burst drug release. This drawback needs to be addressed to fully exploit the advantage of the interaction between the target tissues and the drug: possible strategies could involve specific binding between the drug and the material chosen for the device, and a multiscale approach to reach a tailored, prolonged drug release.
Collapse
Affiliation(s)
- Laura Zorzetto
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Paola Brambilla
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Elena Marcello
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy
| | - Manuela De Gregori
- Pain Therapy Service, IRCCS Foundation Policlinico San Matteo Pavia, Pavia, Italy
| | - Lorenzo Cobianchi
- General Surgery Department, IRCCS Foundation Policlinico San Matteo, Pavia, Italy; Departments of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Andrea Peloso
- General Surgery Department, IRCCS Foundation Policlinico San Matteo, Pavia, Italy; Departments of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Massimo Allegri
- Department of Surgical Sciences, University of Parma, Parma, Italy
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy; Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Lab of Nanotechnology, Pavia, Italy
| | - Paola Petrini
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| |
Collapse
|
2
|
Verron E, Bouler J, Guicheux J. Controlling the biological function of calcium phosphate bone substitutes with drugs. Acta Biomater 2012; 8:3541-51. [PMID: 22729019 DOI: 10.1016/j.actbio.2012.06.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/12/2012] [Accepted: 06/18/2012] [Indexed: 01/05/2023]
Abstract
There is a growing interest in bone tissue engineering for bone repair after traumatic, surgical or pathological injury, such as osteolytic tumor or osteoporosis. In this regard, calcium phosphate (CaP) bone substitutes have been used extensively as bone-targeting drug-delivery systems. This localized approach improves the osteogenic potential of bone substitutes by delivering bone growth factors, thus extending their biofunctionality to any pathological context, including infection, irradiation, tumor and osteoporosis. This review briefly describes the physical and chemical processes implicated in the preparation of drug-delivering CaPs. It also describes the impact of these processes on the intrinsic properties of CaPs, especially in terms of the drug-release profile. In addition, this review focuses on the potential influence of drugs on the resorption rate of CaPs. Interestingly, by modulating the resorption parameters of CaP biomaterials, it should be possible to control the release of bone-stimulating ions, such as inorganic phosphate, in the vicinity of bone cells. Finally, recent in vitro and in vivo evaluations are extensively reported.
Collapse
|
3
|
Controlled release of local anesthetic from calcium phosphate bone cements. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 32:1690-4. [DOI: 10.1016/j.msec.2012.04.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/23/2012] [Accepted: 04/28/2012] [Indexed: 11/21/2022]
|
4
|
Al-Kattan A, Girod-Fullana S, Charvillat C, Ternet-Fontebasso H, Dufour P, Dexpert-Ghys J, Santran V, Bordère J, Pipy B, Bernad J, Drouet C. Biomimetic nanocrystalline apatites: Emerging perspectives in cancer diagnosis and treatment. Int J Pharm 2012; 423:26-36. [DOI: 10.1016/j.ijpharm.2011.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 07/04/2011] [Accepted: 07/05/2011] [Indexed: 10/18/2022]
|