1
|
de La Bourdonnaye G, Ghazalova T, Fojtik P, Kutalkova K, Bednar D, Damborsky J, Rotrekl V, Stepankova V, Chaloupkova R. Computer-aided engineering of stabilized fibroblast growth factor 21. Comput Struct Biotechnol J 2024; 23:942-951. [PMID: 38379823 PMCID: PMC10877085 DOI: 10.1016/j.csbj.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/03/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024] Open
Abstract
FGF21 is an endocrine signaling protein belonging to the family of fibroblast growth factors (FGFs). It has emerged as a molecule of interest for treating various metabolic diseases due to its role in regulating glucogenesis and ketogenesis in the liver. However, FGF21 is prone to heat, proteolytic, and acid-mediated degradation, and its low molecular weight makes it susceptible to kidney clearance, significantly reducing its therapeutic potential. Protein engineering studies addressing these challenges have generally shown that increasing the thermostability of FGF21 led to improved pharmacokinetics. Here, we describe the computer-aided design and experimental characterization of FGF21 variants with enhanced melting temperature up to 15 °C, uncompromised efficacy at activation of MAPK/ERK signaling in Hep G2 cell culture, and ability to stimulate proliferation of Hep G2 and NIH 3T3 fibroblasts cells comparable with FGF21-WT. We propose that stabilizing the FGF21 molecule by rational design should be combined with other reported stabilization strategies to maximize the pharmaceutical potential of FGF21.
Collapse
Affiliation(s)
- Gabin de La Bourdonnaye
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Enantis Ltd., Biotechnology Incubator INBIT, Brno, Czech Republic
| | - Tereza Ghazalova
- Enantis Ltd., Biotechnology Incubator INBIT, Brno, Czech Republic
| | - Petr Fojtik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - David Bednar
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Jiri Damborsky
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | | | - Radka Chaloupkova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Enantis Ltd., Biotechnology Incubator INBIT, Brno, Czech Republic
| |
Collapse
|
2
|
Raftery RM, Gonzalez Vazquez AG, Walsh DP, Chen G, Laiva AL, Keogh MB, O'Brien FJ. Mobilizing Endogenous Progenitor Cells Using pSDF1α-Activated Scaffolds Accelerates Angiogenesis and Bone Repair in Critical-Sized Bone Defects. Adv Healthc Mater 2024; 13:e2401031. [PMID: 38850118 DOI: 10.1002/adhm.202401031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/05/2024] [Indexed: 06/09/2024]
Abstract
Mobilizing endogenous progenitor cells to repair damaged tissue in situ has the potential to revolutionize the field of regenerative medicine, while the early establishment of a vascular network will ensure survival of newly generated tissue. In this study, a gene-activated scaffold containing a stromal derived factor 1α plasmid (pSDF1α), a pro-angiogenic gene that is also thought to be involved in the recruitment of mesenchymal stromal cells (MSCs) to sites of injury is described. It is shown that over-expression of SDF1α protein enhanced MSC recruitment and induced vessel-like structure formation by endothelial cells in vitro. When implanted subcutaneously, transcriptomic analysis reveals that endogenous MSCs are recruited and significant angiogenesis is stimulated. Just 1-week after implantation into a calvarial critical-sized bone defect, pSDF1α-activated scaffolds are recruited MSCs and rapidly activate angiogenic and osteogenic programs, upregulating Runx2, Dlx5, and Sp7. At the same time-point, pVEGF-activated scaffolds are recruited a variety of cell types, activating endochondral ossification. The early response induced by both scaffolds leads to complete bridging of the critical-sized bone defects within 4-weeks. The versatile cell-free gene-activated scaffold described in this study is capable of harnessing and enhancing the body's own regenerative capacity and has immense potential in a myriad of applications.
Collapse
Affiliation(s)
- Rosanne M Raftery
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, D02 YN77, Ireland
- iEd Hub and Department of Anatomy and Neuroscience, College of Medicine and Health, University College Cork, Cork, T12 CY82, Ireland
| | - Arlyng G Gonzalez Vazquez
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, D02 YN77, Ireland
| | - David P Walsh
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, D02 YN77, Ireland
- Translational Research in Nanomedical Devices, School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Gang Chen
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Microsurgical Research and Training Facility (MRTF), Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Ashang L Laiva
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Tisse Engineering Research Group, Royal College of Surgeons in Ireland - Medical University of Bahrain, Adliya, Bahrain
| | - Michael B Keogh
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Tisse Engineering Research Group, Royal College of Surgeons in Ireland - Medical University of Bahrain, Adliya, Bahrain
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, D02 YN77, Ireland
| |
Collapse
|
3
|
Recent developments of biomaterial scaffolds and regenerative approaches for craniomaxillofacial bone tissue engineering. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02928-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
García A, Cabañas MV, Peña J, Sánchez-Salcedo S. Design of 3D Scaffolds for Hard Tissue Engineering: From Apatites to Silicon Mesoporous Materials. Pharmaceutics 2021; 13:pharmaceutics13111981. [PMID: 34834396 PMCID: PMC8624321 DOI: 10.3390/pharmaceutics13111981] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023] Open
Abstract
Advanced bioceramics for bone regeneration constitutes one of the pivotal interests in the multidisciplinary and far-sighted scientific trajectory of Prof. Vallet Regí. The different pathologies that affect osseous tissue substitution are considered to be one of the most important challenges from the health, social and economic point of view. 3D scaffolds based on bioceramics that mimic the composition, environment, microstructure and pore architecture of hard tissues is a consolidated response to such concerns. This review describes not only the different types of materials utilized: from apatite-type to silicon mesoporous materials, but also the fabrication techniques employed to design and adequate microstructure, a hierarchical porosity (from nano to macro scale), a cell-friendly surface; the inclusion of different type of biomolecules, drugs or cells within these scaffolds and the influence on their successful performance is thoughtfully reviewed.
Collapse
Affiliation(s)
- Ana García
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain; (A.G.); (M.V.C.); (J.P.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Madrid, 28040 Madrid, Spain
| | - María Victoria Cabañas
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain; (A.G.); (M.V.C.); (J.P.)
| | - Juan Peña
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain; (A.G.); (M.V.C.); (J.P.)
| | - Sandra Sánchez-Salcedo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain; (A.G.); (M.V.C.); (J.P.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Madrid, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
5
|
Moreira JA, Vasconcelos IC, Fachi JL, Theodoro V, Dalia RA, Aro AA, Pimentel ER, Gaspi FO, Andrade TA, Amaral ME, Esquisatto MA, Mendonça FA, Santos GM. Application of Solidago chilensis and laser improved the repair of burns in diabetic rats. Biomed J 2020; 44:709-716. [PMID: 35166209 PMCID: PMC8847841 DOI: 10.1016/j.bj.2020.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/30/2019] [Accepted: 05/15/2020] [Indexed: 11/14/2022] Open
Abstract
Background The repair of burns in diabetic patients is a clinical problem. It is relevant to study alternative therapies that can improve the healing process. Our aim was to investigate the effects of Solidago chilensis associated or not with laser on burns in diabetic rats. Methods The animals were divided in four groups (n = 30): C- without treatment; S– S. chilensis extract; L-laser irradiated; LS- laser and S. chilensis. In 7, 14 and 21 days samples were collected after the injury to structural, morphometric and molecular analysis. Results Our results demonstrate the association of S. chilensis and laser reduced the inflammatory infiltrate and favored the angiogenesis. In the groups treated only with laser or with the plant extract showed higher levels of VEGF. The low-level laser therapy (LLLT) promoted higher collagen I and reduction of collagen III. It was also observed higher MMP-2 activation and a decreasing of the active isoform of MMP-9 in the S, L and LS groups. Conclusions The treatments improved the repair of burns in diabetic rats, since it reduced the inflammatory infiltrate and favored the collagen organization presenting similar effects in the burn repair of the diabetics.
Collapse
|
6
|
Casarrubios L, Gómez-Cerezo N, Sánchez-Salcedo S, Feito M, Serrano M, Saiz-Pardo M, Ortega L, de Pablo D, Díaz-Güemes I, Fernández-Tomé B, Enciso S, Sánchez-Margallo F, Portolés M, Arcos D, Vallet-Regí M. Silicon substituted hydroxyapatite/VEGF scaffolds stimulate bone regeneration in osteoporotic sheep. Acta Biomater 2020; 101:544-553. [PMID: 31678741 PMCID: PMC7616907 DOI: 10.1016/j.actbio.2019.10.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 01/16/2023]
Abstract
Silicon-substituted hydroxyapatite (SiHA) macroporous scaffolds have been prepared by robocasting. In order to optimize their bone regeneration properties, we have manufactured these scaffolds presenting different microstructures: nanocrystalline and crystalline. Moreover, their surfaces have been decorated with vascular endothelial growth factor (VEGF) to evaluate the potential coupling between vascularization and bone regeneration. In vitro cell culture tests evidence that nanocrystalline SiHA hinders pre-osteblast proliferation, whereas the presence of VEGF enhances the biological functions of both endothelial cells and pre-osteoblasts. The bone regeneration capability has been evaluated using an osteoporotic sheep model. In vivo observations strongly correlate with in vitro cell culture tests. Those scaffolds made of nanocrystalline SiHA were colonized by fibrous tissue, promoted inflammatory response and fostered osteoclast recruitment. These observations discard nanocystalline SiHA as a suitable material for bone regeneration purposes. On the contrary, those scaffolds made of crystalline SiHA and decorated with VEGF exhibited bone regeneration properties, with high ossification degree, thicker trabeculae and higher presence of osteoblasts and blood vessels. Considering these results, macroporous scaffolds made of SiHA and decorated with VEGF are suitable bone grafts for regeneration purposes, even in adverse pathological scenarios such as osteoporosis. STATEMENT OF SIGNIFICANCE: For the first time, the in vivo behavior of scaffolds made of silicon substituted hydroxyapatites (SiHA) has been evaluated under osteoporosis conditions. In order to optimize the bone regeneration properties of these bioceramics, 3D macroporous scaffolds have been manufactured by robocasting and implanted in osteoporotic sheep. Our experimental design shed light on the important issue of the biological response of nano-sized bioceramics vs highly crystalline bioceramics, as well as on the importance of coupling vascularization and bone growth processes by decorating SiHA scaffolds with vascular endothelial growth factor.
Collapse
Affiliation(s)
- L. Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - N. Gómez-Cerezo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - S. Sánchez-Salcedo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - M.J. Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - M.C. Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - M. Saiz-Pardo
- Servicio de Anatomía Patológica, Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - L. Ortega
- Servicio de Anatomía Patológica, Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - D. de Pablo
- Servicio de Anatomía Patológica, Hospital Clínico San Carlos, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - I. Díaz-Güemes
- Centro de Cirugía de Mínima Invasión Jesús Usón, Cáceres, Spain
| | | | - S. Enciso
- Centro de Cirugía de Mínima Invasión Jesús Usón, Cáceres, Spain
| | | | - M.T. Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - D. Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - M. Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
7
|
Christovam AC, Theodoro V, Mendonça FAS, Esquisatto MAM, dos Santos GMT, do Amaral MEC. Activators of SIRT1 in wound repair: an animal model study. Arch Dermatol Res 2019; 311:193-201. [DOI: 10.1007/s00403-019-01901-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022]
|
8
|
Izquierdo-Barba I, Santos-Ruiz L, Becerra J, Feito M, Fernández-Villa D, Serrano M, Díaz-Güemes I, Fernández-Tomé B, Enciso S, Sánchez-Margallo F, Monopoli D, Afonso H, Portolés M, Arcos D, Vallet-Regí M. Synergistic effect of Si-hydroxyapatite coating and VEGF adsorption on Ti6Al4V-ELI scaffolds for bone regeneration in an osteoporotic bone environment. Acta Biomater 2019; 83:456-466. [PMID: 30445158 DOI: 10.1016/j.actbio.2018.11.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 01/14/2023]
Abstract
The osteogenic and angiogenic responses to metal macroporous scaffolds coated with silicon substituted hydroxyapatite (SiHA) and decorated with vascular endothelial growth factor (VEGF) have been evaluated in vitro and in vivo. Ti6Al4V-ELI scaffolds were prepared by electron beam melting and subsequently coated with Ca10(PO4)5.6(SiO4)0.4(OH)1.6 following a dip coating method. In vitro studies demonstrated that SiHA stimulates the proliferation of MC3T3-E1 pre-osteoblastic cells, whereas the adsorption of VEGF stimulates the proliferation of EC2 mature endothelial cells. In vivo studies were carried out in an osteoporotic sheep model, evidencing that only the simultaneous presence of both components led to a significant increase of new tissue formation in osteoporotic bone. STATEMENT OF SIGNIFICANCE: Reconstruction of bones after severe trauma or tumors extirpation is one of the most challenging tasks in the field of orthopedic surgery. This scenario is even more complicated in the case of osteoporotic patients, since their bone regeneration capability is decreased. In this work we present a porous implant that promotes bone regeneration even in osteoporotic bone. By coating the implant with osteogenic bioceramics such as silicon substituted hydroxyapatite and subsequent adsorption of vascular endothelial growth factor, these implants stimulate the bone ingrowth when they are implanted in osteoporotic sheep.
Collapse
|
9
|
Synergistic effect of co-immobilized FGF-2 and vitronectin-derived peptide on feeder-free expansion of induced pluripotent stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:157-169. [PMID: 30274048 DOI: 10.1016/j.msec.2018.07.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 12/28/2022]
Abstract
Expansion of human induced pluripotent stem cells (h-iPSCs) on mouse derived feeder layers or murine cells secretions such as Matrigel hamper their clinical applications. Alternative methods have introduced novel substrates as stem cell niches or/and optimized combinations of humanized soluble factors as fully defined mediums. Accordingly vitronectin as a main part of ECM have been commercialized significantly as a stem cell niche-forming substrate. In this work, we used a functional peptide derived from vitronectin (VTN) and co-immobilized it with FGF-2 (as an indisputable ingredient of defined culture mediums) on chitosan film surface. After chemical and physical characterization of the pristine chitosan surface as well as ones modified by VTN or/and FGF-2, h-iPS cells were cultured on them at the xeno/feeder-free conditions. Our results demonstrated that co-immobilization of these two biomolecules has a synergistic effect on adhesion and clonal growth of h-iPS cells with maintained expression of pluripotency markers in a FGF-2 density-dependent manner. This is the first report of co-immobilization of an ECM derived molecule and a growth factor for stem cell culture.
Collapse
|
10
|
Cui W, Sun G, Qu Y, Xiong Y, Sun T, Ji Y, Yang L, Shao Z, Ma J, Zhang S, Guo X. Repair of rat calvarial defects using Si-doped hydroxyapatite scaffolds loaded with a bone morphogenetic protein-2-related peptide. J Orthop Res 2016; 34:1874-1882. [PMID: 26909759 DOI: 10.1002/jor.23208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/17/2016] [Indexed: 02/06/2023]
Abstract
Tissue engineering promises therapies ideal for treating conventional large bone injuries and defects. In the present study, we developed a novel Si-HA scaffold loaded with a synthetic BMP-2-related peptide, P28, and tested its ability to repair a critical-sized calvarial defect. We created a calvarial defect (5 mm in diameter) in the parietal bone of 32 rats and implanted one of the following biomaterials: No implant (control), Si-HA, P28/Si-HA, or rhBMP-2/Si-HA. As assessed by micro CT imaging and histological evaluations, the P28/Si-HA scaffold promoted bone recovery to a similar degree as the rhBMP-2/Si-HA scaffold. In addition, both P28/Si-HA and rhBMP-2/Si-HA promoted recovery better than Si-HA alone. The novel P28/Si-HA scaffold might represent a promising biomaterial for future bone tissue engineering applications. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1874-1882, 2016.
Collapse
Affiliation(s)
- Wei Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Guangfei Sun
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Yanzhen Qu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yi Xiong
- Department of Orthopedics, Central hospital of Enshi, Enshi, 445000, People's Republic of China
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yanhui Ji
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Liang Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Jun Ma
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| |
Collapse
|
11
|
Seifi M, Lotfi A, Badiee MR, Abdolazimi Z, Amdjadi P, Bargrizan M. The Effect of An Angiogenic Cytokine on Orthodontically Induced Inflammatory Root Resorption. CELL JOURNAL 2016; 18:271-80. [PMID: 27551674 PMCID: PMC4992183 DOI: 10.22074/cellj.2016.4323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/30/2015] [Indexed: 12/02/2022]
Abstract
Objective Orthodontically induced inflammatory root resorption (OIIRR) is an undesirable sequel of tooth movement after sterile necrosis that takes place in periodontal ligament due to blockage of blood vessels following exertion of orthodontic force. This study
sought to assess the effect of an angiogenic cytokine on OIIRR in rat model. Materials and Methods In this experimental animal study, 50 rats were randomly divided into 5 groups of 10 each: E10, E100 and E1000 receiving an injection of 10, 100
and 1000 ng of basic fibroblast growth factor (bFGF), respectively, positive control group
(CP) receiving an orthodontic appliance and injection of phosphate buffered saline (PBS)
and the negative control group (CN) receiving only the anesthetic agent. A nickel titanium
coil spring was placed between the first molar and the incisor on the right side of maxilla.
Twenty-one days later, the rats were sacrificed. Histopathological sections were made to
assess the number and area of resorption lacunae, number of blood vessels, osteoclasts
and Howship’s lacunae. Data were statistically analyzed using ANOVA and Tukey’s honest significant difference (HSD) test. Results Number of resorption lacunae and area of resorption lacunae in E1000 (0.97 ± 0.80 and 1. 27 ± 0.01×10-3, respectively) were significantly lower than in CP (4.17 ± 0.90
and 2.77 ± 0.01×10-3, respectively, P=0.000). Number of blood vessels, osteoclasts and
Howship’s lacunae were significantly higher in E1000 compared to CP (P<0.05). Conclusion Tooth movement as the outcome of bone remodeling is concomitant with
the formation of sterile necrosis in the periodontal ligament following blocked blood supply. Thus, bFGF can significantly decrease the risk of root resorption by providing more
oxygen and angiogenesis.
Collapse
Affiliation(s)
- Massoud Seifi
- Department of Orthodontics, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Lotfi
- Department of Oral and Maxillofacial Pathology, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Badiee
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Zahra Abdolazimi
- Department of Pedodontics, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Amdjadi
- Department of Dental Materials, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Bargrizan
- Department of Pedodontics, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Parker F, White K, Phillips S, Peckham M. Promoting differentiation of cultured myoblasts using biomimetic surfaces that present alpha-laminin-2 peptides. Cytotechnology 2016; 68:2159-69. [PMID: 27507643 PMCID: PMC5023573 DOI: 10.1007/s10616-016-0006-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/16/2016] [Indexed: 12/01/2022] Open
Abstract
Traditionally, muscle cell lines are cultured on glass coverslips and differentiated to investigate myoblast fusion and differentiation. Efficient differentiation of myoblasts produces a dense network of myotubes with the correct organisation for contraction. Here we have tested the ability of artificially generated, precisely controlled peptide surfaces to enhance the efficiency of myoblast differentiation. We focused on specific short peptides from α-laminin-2 (IKVSV, VQLRNGFPYFSY and GLLFYMARINHA) as well as residues 15–155 from FGF1. We tested if these peptides in isolation, and/or in combination promoted muscle differentiation in culture, by promoting fusion and/or by improving sarcomere organisation. The majority of these peptides promoted fusion and differentiation in two different mouse myogenic cell lines and in primary human myoblasts. The additive effects of all four peptides gave the best results for both mouse cell lines tested, while primary human cell cultures differentiated equally well on most peptide surfaces tested. These data show that a mixture of short biomimetic peptides can reliably promote differentiation in mouse and human myoblasts.
Collapse
Affiliation(s)
- Francine Parker
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, UK
| | - Kathryn White
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, UK
| | - Siȏn Phillips
- Bioscience Centre, International Centre for Life, Orla Protein Technologies Ltd, Newcastle upon Tyne, NE1 4EP, UK
| | - Michelle Peckham
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
13
|
Oxidative Nanopatterning of Titanium Surface Influences mRNA and MicroRNA Expression in Human Alveolar Bone Osteoblastic Cells. Int J Biomater 2016; 2016:9169371. [PMID: 27200092 PMCID: PMC4856946 DOI: 10.1155/2016/9169371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 11/17/2022] Open
Abstract
Titanium implants have been extensively used in orthopedic and dental applications. It is well known that micro- and nanoscale surface features of biomaterials affect cellular events that control implant-host tissue interactions. To improve our understanding of how multiscale surface features affect cell behavior, we used microarrays to evaluate the transcriptional profile of osteoblastic cells from human alveolar bone cultured on engineered titanium surfaces, exhibiting the following topographies: nanotexture (N), nano+submicrotexture (NS), and rough microtexture (MR), obtained by modulating experimental parameters (temperature and solution composition) of a simple yet efficient chemical treatment with a H2SO4/H2O2 solution. Biochemical assays showed that cell culture proliferation augmented after 10 days, and cell viability increased gradually over 14 days. Among the treated surfaces, we observed an increase of alkaline phosphatase activity as a function of the surface texture, with higher activity shown by cells adhering onto nanotextured surfaces. Nevertheless, the rough microtexture group showed higher amounts of calcium than nanotextured group. Microarray data showed differential expression of 716 mRNAs and 32 microRNAs with functions associated with osteogenesis. Results suggest that oxidative nanopatterning of titanium surfaces induces changes in the metabolism of osteoblastic cells and contribute to the explanation of the mechanisms that control cell responses to micro- and nanoengineered surfaces.
Collapse
|
14
|
Electrical stimulation enhances tissue reorganization during orthodontic tooth movement in rats. Clin Oral Investig 2016; 21:111-120. [DOI: 10.1007/s00784-016-1759-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 02/19/2016] [Indexed: 01/03/2023]
|
15
|
Torres-Rodríguez C, Portolés MT, Matesanz MC, Linares J, Feito MJ, Izquierdo-Barba I, Esbrit P, Vallet-Regí M. Effects of bleaching on osteoclast activity and their modulation by osteostatin and fibroblast growth factor 2. J Colloid Interface Sci 2015; 461:285-291. [PMID: 26407056 DOI: 10.1016/j.jcis.2015.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 02/06/2023]
Abstract
HYPOTHESIS Dental bleaching with H2O2 is a common daily practice in dentistry to correct discoloration of anterior teeth. The aim of this study has been to determine whether this treatment of human teeth affects growth, differentiation and activity of osteoclast-like cells, as well as the putative modulatory action of osteostatin and fibroblast growth factor 2 (FGF-2). EXPERIMENTS Previously to the in vitro assays, structural, physical-chemical and morphological features of teeth after bleaching were studied. Osteoclast-like cells were cultured on human dentin disks, pre-treated or not with 38% H2O2 bleaching gel, in the presence or absence of osteostatin (100 nM) or FGF-2 (1 ng/ml). Cell proliferation and viability, intracellular content of reactive oxygen species (ROS), pro-inflammatory cytokine (IL-6 and TNFα) secretion and resorption activity were evaluated. FINDINGS Bleaching treatment failed to affect either the structural or the chemical features of both enamel and dentin, except for slight morphological changes, increased porosity in the most superficial parts (enamel), and a moderate increase in the wettability degree. In this scenario, bleaching produced an increased osteoclast-like cell proliferation but decreased cell viability and cytokine secretion, while it augmented resorption activity on dentin. The presence of either osteostatin or FGF-2 reduced the osteoclast-like cell proliferation induced by bleaching. FGF-2 enhanced ROS content, whereas osteostatin decreased ROS but increased TNFα secretion. The bleaching effect on resorption activity was increased by osteostatin, but this effect was less evident with FGF-2. CONCLUSIONS These findings further confirm the deleterious effects of tooth bleaching by affecting osteoclast growth and function as well as different modulatory actions of osteostatin and FGF-2.
Collapse
Affiliation(s)
- Carolina Torres-Rodríguez
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia, Sede Bogotá, Colombia.
| | - M Teresa Portolés
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain.
| | - M Concepción Matesanz
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain.
| | - Javier Linares
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain.
| | - M José Feito
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain.
| | - Isabel Izquierdo-Barba
- Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubrei+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Pedro Esbrit
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Madrid, Spain.
| | - María Vallet-Regí
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia, Sede Bogotá, Colombia; Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain; Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubrei+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
16
|
Response of osteoblasts and preosteoblasts to calcium deficient and Si substituted hydroxyapatites treated at different temperatures. Colloids Surf B Biointerfaces 2015; 133:304-13. [DOI: 10.1016/j.colsurfb.2015.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 11/20/2022]
|
17
|
Giner M, Montoya MJ, Vázquez MA, Miranda C, Pérez-Cano R. Differences in osteogenic and apoptotic genes between osteoporotic and osteoarthritic patients. BMC Musculoskelet Disord 2013; 14:41. [PMID: 23351916 PMCID: PMC3584899 DOI: 10.1186/1471-2474-14-41] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 01/22/2013] [Indexed: 12/13/2022] Open
Abstract
Background Osteoporosis is a metabolic disorder characterized by a reduction in bone mass and deterioration in the microarchitectural structure of the bone, leading to a higher risk for spontaneous and fragility fractures. The main aim was to study the differences between human bone from osteoporotic and osteoarthritic patients about gene expression (osteogenesis and apoptosis), bone mineral density, microstructural and biomechanic parameters. Methods We analyzed data from 12 subjects: 6 with osteoporotic hip fracture (OP) and 6 with hip osteoarthritis (OA), as the control group. All subjects underwent medical history, analytical determinations, densitometry, histomorphometric and biochemical study. The expression of 86 genes of osteogenesis and 86 genes of apoptosis was studied in pool of bone samples from patients with OP and OA by PCR array. Results We observed that most of the genes of apoptosis and osteogenesis show a decrease in gene expression in the osteoporotic group in comparison with the osteoarthritic group. The histomorphometric study shows a lower bone quality in the group of patients with hip fractures compared to the osteoarthritic group. Conclusions The bone tissue of osteoporotic fracture patients is more fragile than the bone of OA patients. Our results showed an osteoporotic bone with a lower capacities for differentiation and osteoblastic activity as well as a lower rate of apoptosis than osteoarthritic bone. These results are related with structural and biochemical parameters.
Collapse
Affiliation(s)
- Mercè Giner
- Bone Metabolism Unit, Internal Medicine, Virgen Macarena University Hospital, Avda, Dr, Fedriani s/n, 41009, Sevilla, Spain.
| | | | | | | | | |
Collapse
|
18
|
Meseguer-Olmo L, Vicente-Ortega V, Alcaraz-Baños M, Calvo-Guirado JL, Vallet-Regí M, Arcos D, Baeza A. In-vivo behavior of Si-hydroxyapatite/polycaprolactone/DMB scaffolds fabricated by 3D printing. J Biomed Mater Res A 2012; 101:2038-48. [PMID: 23255259 DOI: 10.1002/jbm.a.34511] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/08/2012] [Accepted: 10/29/2012] [Indexed: 11/10/2022]
Abstract
Scaffolds made of polycaprolactone and nanocrystalline silicon-substituted hydroxyapatite have been fabricated by 3D printing rapid prototyping technique. To asses that the scaffolds fulfill the requirements to be considered for bone grafting applications, they were implanted in New Zealand rabbits. Histological and radiological studies have demonstrated that the scaffolds implanted in bone exhibited an excellent osteointegration without the interposition of fibrous tissue between bone and implants and without immune response after 4 months of implantation. In addition, we have evaluated the possibility of improving the scaffolds efficiency by incorporating demineralized bone matrix during the preparation by 3D printing. When demineralized bone matrix (DBM) is incorporated, the efficacy of the scaffolds is enhanced, as new bone formation occurs not only in the peripheral portions of the scaffolds but also within its pores after 4 months of implantation. This enhanced performance can be explained in terms of the osteoinductive properties of the DBM in the scaffolds, which have been assessed through the new bone tissue formation when the scaffolds are ectopically implanted.
Collapse
Affiliation(s)
- Luis Meseguer-Olmo
- Department of Orthopaedic Surgery and Bioengineering Unit, University Hospital V. Arrixaca, University of Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Mehta M, Schmidt-Bleek K, Duda GN, Mooney DJ. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv Drug Deliv Rev 2012; 64:1257-76. [PMID: 22626978 PMCID: PMC3425736 DOI: 10.1016/j.addr.2012.05.006] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 12/20/2022]
Abstract
Complications in treatment of large bone defects using bone grafting still remain. Our understanding of the endogenous bone regeneration cascade has inspired the exploration of a wide variety of growth factors (GFs) in an effort to mimic the natural signaling that controls bone healing. Biomaterial-based delivery of single exogenous GFs has shown therapeutic efficacy, and this likely relates to its ability to recruit and promote replication of cells involved in tissue development and the healing process. However, as the natural bone healing cascade involves the action of multiple factors, each acting in a specific spatiotemporal pattern, strategies aiming to mimic the critical aspects of this process will likely benefit from the usage of multiple therapeutic agents. This article reviews the current status of approaches to deliver single GFs, as well as ongoing efforts to develop sophisticated delivery platforms to deliver multiple lineage-directing morphogens (multiple GFs) during bone healing.
Collapse
Affiliation(s)
- Manav Mehta
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
20
|
Lozano D, Feito MJ, Portal-Núñez S, Lozano RM, Matesanz MC, Serrano MC, Vallet-Regí M, Portolés MT, Esbrit P. Osteostatin improves the osteogenic activity of fibroblast growth factor-2 immobilized in Si-doped hydroxyapatite in osteoblastic cells. Acta Biomater 2012; 8:2770-7. [PMID: 22487933 DOI: 10.1016/j.actbio.2012.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
Si-doped hydroxyapatite (Si-HA) is a suitable ceramic for the controlled release of agents to improve bone repair. We recently showed that parathyroid hormone-related protein (PTHrP) (107-111) (osteostatin) has remarkable osteogenic features in various in vitro and in vivo systems. Fibroblast growth factor (FGF)-2 modulates osteoblastic function and induces angiogenesis, and can promote osteoblast adhesion and proliferation after immobilization on Si-HA. In the present study we examined whether osteostatin might improve the biological efficacy of FGF-2-coated Si-HA in osteoblastic MC3T3-E1 cells in vitro. We found that Si-HA/FGF-2 in the presence or absence of osteostatin (100 nM) similarly increased cell growth (by about 50%). However, addition of the latter peptide to Si-HA/FGF-2 significantly enhanced gene expression of Runx2, osteocalcin, vascular endothelial growth factor (VEGF) and the VEGF receptors 1 and 2, without significantly affecting that of FGF receptors in these cells. Moreover, secreted VEGF in the MC3T3-E1 cell conditioned medium, which induced the proliferation of pig endothelial-like cells, was also enhanced by these combined factors. The synergistic action of osteostatin and Si-HA/FGF-2 on the VEGF system was abrogated by a mitogen-activated protein kinase inhibitor (U0126) and by the calcium antagonist verapamil. This action was related to an enhancement of alkaline phosphatase activity and matrix mineralization in MC3T3-E1 cells, and also in primary human osteoblastic cells. These in vitro data show that osteostatin increases the osteogenic efficacy of a Si-HA/FGF-2 biomaterial by a mechanism involving mitogen-activated protein kinases and intracellular Ca(2+). These findings provide an attractive strategy for bone tissue engineering.
Collapse
|
21
|
Demirkiran H. Bioceramics for Osteogenesis, Molecular and Cellular Advances. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 760:134-47. [DOI: 10.1007/978-1-4614-4090-1_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|