1
|
Dorozhkin SV. There Are over 60 Ways to Produce Biocompatible Calcium Orthophosphate (CaPO4) Deposits on Various Substrates. JOURNAL OF COMPOSITES SCIENCE 2023; 7:273. [DOI: 10.3390/jcs7070273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A The present overview describes various production techniques for biocompatible calcium orthophosphate (abbreviated as CaPO4) deposits (coatings, films and layers) on the surfaces of various types of substrates to impart the biocompatible properties for artificial bone grafts. Since, after being implanted, the grafts always interact with the surrounding biological tissues at the interfaces, their surface properties are considered critical to clinical success. Due to the limited number of materials that can be tolerated in vivo, a new specialty of surface engineering has been developed to desirably modify any unacceptable material surface characteristics while maintaining the useful bulk performance. In 1975, the development of this approach led to the emergence of a special class of artificial bone grafts, in which various mechanically stable (and thus suitable for load-bearing applications) implantable biomaterials and artificial devices were coated with CaPO4. Since then, more than 7500 papers have been published on this subject and more than 500 new publications are added annually. In this review, a comprehensive analysis of the available literature has been performed with the main goal of finding as many deposition techniques as possible and more than 60 methods (double that if all known modifications are counted) for producing CaPO4 deposits on various substrates have been systematically described. Thus, besides the introduction, general knowledge and terminology, this review consists of two unequal parts. The first (bigger) part is a comprehensive summary of the known CaPO4 deposition techniques both currently used and discontinued/underdeveloped ones with brief descriptions of their major physical and chemical principles coupled with the key process parameters (when possible) to inform readers of their existence and remind them of the unused ones. The second (smaller) part includes fleeting essays on the most important properties and current biomedical applications of the CaPO4 deposits with an indication of possible future developments.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
2
|
Effect of Hydroxyapatite Coating by Er: YAG Pulsed Laser Deposition on the Bone Formation Efficacy by Polycaprolactone Porous Scaffold. Int J Mol Sci 2022; 23:ijms23169048. [PMID: 36012313 PMCID: PMC9409384 DOI: 10.3390/ijms23169048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Composite scaffolds obtained by the combination of biodegradable porous scaffolds and hydroxyapatite with bone regeneration potential are feasible materials for bone tissue engineering. However, most composite scaffolds have been fabricated by complicated procedures or under thermally harsh conditions. We have previously demonstrated that hydroxyapatite coating onto various substrates under a thermally mild condition was achieved by erbium-doped yttrium aluminum garnet (Er: YAG) pulsed laser deposition (PLD). The purpose of this study was to prepare a polycaprolactone (PCL) porous scaffold coated with the hydroxyapatite by the Er: YAG-PLD method. Hydroxyapatite coating by the Er: YAG-PLD method was confirmed by morphology, crystallographic analysis, and surface chemical characterization studies. When cultured on PCL porous scaffold coated with hydroxyapatite, rat bone marrow-derived mesenchymal stem cells adhered, spread, and proliferated well. The micro-CT and staining analyses after the implantation of scaffold into the critical-sized calvaria bone defect in rats indicate that PCL porous scaffold coated with hydroxyapatite demonstrates accelerated and widespread bone formation. In conclusion, PCL porous scaffold coated with hydroxyapatite obtained by the Er: YAG-PLD method is a promising material in bone tissue engineering.
Collapse
|
3
|
Biomimetic vs. Direct Approach to Deposit Hydroxyapatite on the Surface of Low Melting Point Polymers for Tissue Engineering. NANOMATERIALS 2020; 10:nano10112162. [PMID: 33138141 PMCID: PMC7693928 DOI: 10.3390/nano10112162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 01/27/2023]
Abstract
Polymers are widely used in many applications in the field of biomedical engineering. Among eclectic selections of polymers, those with low melting temperature (Tm < 200 °C), such as poly(methyl methacrylate), poly(lactic-co-glycolic acid), or polyethylene, are often used in bone, dental, maxillofacial, and corneal tissue engineering as substrates or scaffolds. These polymers, however, are bioinert, have a lack of reactive surface functional groups, and have poor wettability, affecting their ability to promote cellular functions and biointegration with the surrounding tissue. Improving the biointegration can be achieved by depositing hydroxyapatite (HAp) on the polymeric substrates. Conventional thermal spray and vapor phase coating, including the Food and Drug Administration (FDA)-approved plasma spray technique, is not suitable for application on the low Tm polymers due to the high processing temperature, reaching more than 1000 °C. Two non-thermal HAp coating approaches have been described in the literature, namely, the biomimetic deposition and direct nanoparticle immobilization techniques. In the current review, we elaborate on the unique features of each technique, followed by discussing the advantages and disadvantages of each technique to help readers decide on which method is more suitable for their intended applications. Finally, the future perspectives of the non-thermal HAp coating are given in the conclusion.
Collapse
|
4
|
Abstract
Surface modification of orthopedic and dental implants has been demonstrated to be an effective strategy to accelerate bone healing at early implantation times. Among the different alternatives, coating implants with a layer of hydroxyapatite (HAp) is one of the most used techniques, due to its excellent biocompatibility and osteoconductive behavior. The composition and crystalline structure of HAp allow for numerous ionic substitutions that provide added value, such as antibiotic properties or osteoinduction. In this article, we will review and critically analyze the most important advances in the field of substituted hydroxyapatite coatings. In recent years substituted HAp coatings have been deposited not only on orthopedic prostheses and dental implants, but also on macroporous scaffolds, thus expanding their applications towards bone regeneration therapies. Besides, the capability of substituted HAps to immobilize proteins and growth factors by non-covalent interactions has opened new possibilities for preparing hybrid coatings that foster bone healing processes. Finally, the most important in vivo outcomes will be discussed to understand the prospects of substituted HAp coatings from a clinical point of view.
Collapse
Affiliation(s)
- Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain. and CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain. and CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
5
|
Investigations of Transient Plasma Generated by Laser Ablation of Hydroxyapatite during the Pulsed Laser Deposition Process. Symmetry (Basel) 2020. [DOI: 10.3390/sym12010132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The optimization of the pulsed laser deposition process was attempted here for the generation of hydroxyapatite thin films. The deposition process was monitored with an ICCD (Intensified Coupled Charged Device) fast gated camera and a high-resolution spectrometer. The global dynamics of the laser produced plasma showed a self-structuring into three components with different composition and kinetics. The optical emission spectroscopy revealed the formation of a stoichiometric plasma and proved that the segregation in the kinetic energy of the plasma structure is also reflected by the individual energies of the ejected particles. Atomic Force Microscopy was also implemented to investigate the properties and the quality of the deposited film. The presence of micrometric clusters was seen at a high laser fluence deposition with in-situ ICCD imaging. We developed a fractal model based on Schrödinger type functionalities. The model can cover the distribution of the excited states in the laser produced plasma. Moreover, we proved that SL(2R) invariance can facilitate plasma substructures synchronization through a self-modulation in amplitude.
Collapse
|
6
|
Fabrication and In vitro Bioactivity of Robust Hydroxyapatite Coating on Porous Titanium Implant. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9101-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Ansar EB, Ravikumar K, Suresh Babu S, Fernandez FB, Komath M, Basu B, Harikrishna Varma PR. Inducing apatite pre-layer on titanium surface through hydrothermal processing for osseointegration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110019. [PMID: 31546429 DOI: 10.1016/j.msec.2019.110019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/21/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022]
Abstract
Commercially available titanium (Ti) having high mechanical strength and a low area of cross-section can be adequately exploited for minimally invasive dental implantation. Current directions in clinical dental implant therapy focus on endosseous dental implant surfaces with nanoscale topographies using easy and economical processing approaches. The present study describes the generation of a novel nanolayer nucleating agent on the surface of Ti implant for early endosseous after implantation. The strategy is to modify the surface of Ti implant using Ca(OH)2 via hydrothermal technique (Ti-HT). The X-ray photoelectron spectroscopy analysis confirmed the presence of chemically bonded Ca ions on the Ti surface in the form of CaTiO3. In vitro studies are carried out to confirm the bone bonding ability of calcium enriched Ti surface. The apatite deposition on the surface after exposure to SBF for 7 days is confirmed via scanning electron microscopy, X-ray powder diffraction, Fourier-transform infrared spectroscopy and energy-dispersive X-ray spectroscopy techniques. The cell viability of Ti-HT was evaluated using direct contact method and MTT assay. The potential of Ca2+ ion on Ti surface via hydrothermal pre-treatment to enhance osseointegration of Ti has been proposed for achieving early stability for dental implants.
Collapse
Affiliation(s)
- E B Ansar
- Division of Bioceramics, Sree Chitra Tirunal Institute for Medical Sciences & Technology, 695012, India; Department of Chemistry, M.E.S Asmabi College, P. Vemballur, Kodungallur 680671, India
| | - K Ravikumar
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - S Suresh Babu
- Division of Bioceramics, Sree Chitra Tirunal Institute for Medical Sciences & Technology, 695012, India
| | - F B Fernandez
- Division of Bioceramics, Sree Chitra Tirunal Institute for Medical Sciences & Technology, 695012, India
| | - Manoj Komath
- Division of Bioceramics, Sree Chitra Tirunal Institute for Medical Sciences & Technology, 695012, India
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - P R Harikrishna Varma
- Division of Bioceramics, Sree Chitra Tirunal Institute for Medical Sciences & Technology, 695012, India.
| |
Collapse
|
8
|
Jiang Y, Han Y, Wang J, Lv F, Yi Z, Ke Q, Xu H. Space-Oriented Nanofibrous Scaffold with Silicon-Doped Amorphous Calcium Phosphate Nanocoating for Diabetic Wound Healing. ACS APPLIED BIO MATERIALS 2019; 2:787-795. [DOI: 10.1021/acsabm.8b00657] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yuqi Jiang
- College of Chemistry and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| | - Yiming Han
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Wang
- College of Chemistry and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| | - Fang Lv
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qinfei Ke
- College of Chemistry and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| | - He Xu
- College of Chemistry and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| |
Collapse
|
9
|
Lim HK, Byun SH, Woo JM, Kim SM, Lee SM, Kim BJ, Kim HE, Lee JW, Kim SM, Lee JH. Biocompatibility and Biocorrosion of Hydroxyapatite-Coated Magnesium Plate: Animal Experiment. MATERIALS 2017; 10:ma10101149. [PMID: 28973984 PMCID: PMC5666955 DOI: 10.3390/ma10101149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 11/16/2022]
Abstract
Magnesium (Mg) has the advantage of being resorbed in vivo, but its resorption rate is difficult to control. With uncontrolled resorption, Magnesium as a bone fixation material has minimal clinical value. During resorption not only is the strength rapidly weakened, but rapid formation of metabolite also occurs. In order to overcome these disadvantages, hydroxyapatite (HA) surface coating of pure magnesium plate was attempted in this study. Magnesium plates were inserted above the frontal bone of Sprague-Dawley rats in both the control group (Bare-Mg group) and the experimental group (HA-Mg group). The presence of inflammation, infection, hydrogen gas formation, wound dehiscence, and/or plate exposure was observed, blood tests were performed, and the resorption rate and tensile strength of the retrieved metal plates were measured. The HA-Mg group showed no gas formation or plate exposure until week 12. However, the Bare-Mg group showed consistent gas formation and plate exposure beginning in week 2. WBC (White Blood Cell), BUN (Blood Urea Nitrogen), Creatinine, and serum magnesium concentration levels were within normal range in both groups. AST (Aspartate Aminotransferase) and ALT (Alanine Aminotransferase) values, however, were above normal range in some animals of both groups. The HA-Mg group showed statistically significant advantage in resistance to degradation compared to the Bare-Mg group in weeks 2, 4, 6, 8, and 12. Degradation of HA-Mg plates proceeded after week 12. Coating magnesium plates with hydroxyapatite may be a viable method to maintain their strength long enough to allow bony healing and to control the resorption rate during the initial period.
Collapse
Affiliation(s)
- Ho-Kyung Lim
- Department of Oral and Maxillofacial Surgery, Korea University Medical Center, Guro Hospital, Seoul 08308, Korea.
| | - Soo-Hwan Byun
- Department of Oral and Maxillofacial Surgery, Dongtan Sacred Heart Hospital, Hallym University Medical Center, Kyonggi-do 18450, Korea.
| | - Jae-Man Woo
- Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, Seoul 03080, Korea.
| | - Sae-Mi Kim
- Department of Material Science and Engineering, Seoul National University, Seoul 08826, Korea.
| | - Sung-Mi Lee
- Department of Material Science and Engineering, Seoul National University, Seoul 08826, Korea.
| | - Bong-Ju Kim
- Clinical Translational Research Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Korea.
| | - Hyoun-Ee Kim
- Department of Material Science and Engineering, Seoul National University, Seoul 08826, Korea.
| | - Jung-Woo Lee
- Department of Oral and Maxillofacial Surgery, Kyunghee University Dental Hospital, Seoul 02453, Korea.
| | - Soung-Min Kim
- Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, Seoul 03080, Korea.
| | - Jong-Ho Lee
- Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, Seoul 03080, Korea.
- Clinical Translational Research Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Korea.
| |
Collapse
|
10
|
Lim HK, Byun SH, Lee JY, Lee JW, Kim SM, Lee SM, Kim HE, Lee JH. Radiological, histological, and hematological evaluation of hydroxyapatite-coated resorbable magnesium alloy screws placed in rabbit tibia. J Biomed Mater Res B Appl Biomater 2016; 105:1636-1644. [PMID: 27174442 DOI: 10.1002/jbm.b.33703] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 03/15/2016] [Accepted: 04/21/2016] [Indexed: 11/11/2022]
Abstract
Titanium (Ti) screw has excellent mechanical property, and osseointegration capacity. However, they require surgery for removal. In contrast, polymer screws are resorbable, but they have poor mechanical properties. In this research, magnesium alloy screws (WE43: Mg-Y-Nd-Zr) that have advantages of titanium and polymer were manufactured. In addition, to increase biocompatibility and control degradation rate, the Mg alloy was coated with hydroxyapatite (HA). Torsion test and corrosion test were performed in vitro. For clinical, radiological and histological evaluation, on the eight rabbits, two HA-coated screws were installed in left tibia, and two noncoated screws were installed in right tibia. Each four rabbits were sacrificed 6 and 12 weeks postoperatively. For hematological evaluation, the same type of screws were installed on both legs. Complete blood count (CBC), Mg2+ concentrate were sampled from the ear central artery on the operation day for a control point, and at 1, 2, 4, 6, 8, and 12 weeks. Mg alloy screws have no differences of biocompatibility according to the HA coating. However, resorption of screw was slower in case of the HA coating. The hematological problem related releasing of Mg was not found. The results suggest that Mg alloy screws have feasibility for clinical application. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1636-1644, 2017.
Collapse
Affiliation(s)
- Ho-Kyung Lim
- Department of Oral and Maxillofacial Surgery, Clinical Trial Center, Seoul National University Dental Hospital, Seoul, Korea.,Department of Oral and Maxillofacial Surgery, Korea University Medical Center, Guro Hospital, Seoul, Korea
| | - Soo-Hwan Byun
- Department of Oral and Maxillofacial Surgery, Dongtan Sacred Heart Hospital, Hallym University Medical Center, Kyonggi-do, Korea
| | - Jin-Yong Lee
- Department of Oral and Maxillofacial Surgery, Korea University Medical Center, Guro Hospital, Seoul, Korea
| | - Jung-Woo Lee
- Department of Oral and Maxillofacial Surgery, Kyunghee University Dental Hospital, Seoul, Korea
| | - Sae-Mi Kim
- Department of Material Science and Engineering, Seoul National University, Seoul, Korea
| | - Sung-Mi Lee
- Department of Material Science and Engineering, Seoul National University, Seoul, Korea
| | - Hyoun-Ee Kim
- Department of Material Science and Engineering, Seoul National University, Seoul, Korea
| | - Jong-Ho Lee
- Department of Oral and Maxillofacial Surgery, Clinical Trial Center, Seoul National University Dental Hospital, Seoul, Korea
| |
Collapse
|
11
|
Calcium orthophosphate deposits: Preparation, properties and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:272-326. [PMID: 26117762 DOI: 10.1016/j.msec.2015.05.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/21/2015] [Accepted: 05/08/2015] [Indexed: 01/12/2023]
Abstract
Since various interactions among cells, surrounding tissues and implanted biomaterials always occur at their interfaces, the surface properties of potential implants appear to be of paramount importance for the clinical success. In view of the fact that a limited amount of materials appear to be tolerated by living organisms, a special discipline called surface engineering was developed to initiate the desirable changes to the exterior properties of various materials but still maintaining their useful bulk performances. In 1975, this approach resulted in the introduction of a special class of artificial bone grafts, composed of various mechanically stable (consequently, suitable for load bearing applications) implantable biomaterials and/or bio-devices covered by calcium orthophosphates (CaPO4) to both improve biocompatibility and provide an adequate bonding to the adjacent bones. Over 5000 publications on this topic were published since then. Therefore, a thorough analysis of the available literature has been performed and about 50 (this number is doubled, if all possible modifications are counted) deposition techniques of CaPO4 have been revealed, systematized and described. These CaPO4 deposits (coatings, films and layers) used to improve the surface properties of various types of artificial implants are the topic of this review.
Collapse
|
12
|
Liu B, Zhang X, Xiao GY, Lu YP. Phosphate chemical conversion coatings on metallic substrates for biomedical application: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 47:97-104. [DOI: 10.1016/j.msec.2014.11.038] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/09/2014] [Accepted: 11/10/2014] [Indexed: 01/09/2023]
|
13
|
Surmenev RA, Surmeneva MA, Ivanova AA. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis--a review. Acta Biomater 2014; 10:557-79. [PMID: 24211734 DOI: 10.1016/j.actbio.2013.10.036] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 12/15/2022]
Abstract
A systematic analysis of results available from in vitro, in vivo and clinical trials on the effects of biocompatible calcium phosphate (CaP) coatings is presented. An overview of the most frequently used methods to prepare CaP-based coatings was conducted. Dense, homogeneous, highly adherent and biocompatible CaP or hybrid organic/inorganic CaP coatings with tailored properties can be deposited. It has been demonstrated that CaP coatings have a significant effect on the bone regeneration process. In vitro experiments using different cells (e.g. SaOS-2, human mesenchymal stem cells and osteoblast-like cells) have revealed that CaP coatings enhance cellular adhesion, proliferation and differentiation to promote bone regeneration. However, in vivo, the exact mechanism of osteogenesis in response to CaP coatings is unclear; indeed, there are conflicting reports of the effectiveness of CaP coatings, with results ranging from highly effective to no significant or even negative effects. This review therefore highlights progress in CaP coatings for orthopaedic implants and discusses the future research and use of these devices. Currently, an exciting area of research is in bioactive hybrid composite CaP-based coatings containing both inorganic (CaP coating) and organic (collagen, bone morphogenetic proteins, arginylglycylaspartic acid etc.) components with the aim of promoting tissue ingrowth and vascularization. Further investigations are necessary to reveal the relative influences of implant design, surgical procedure, and coating characteristics (thickness, structure, topography, porosity, wettability etc.) on the long-term clinical effects of hybrid CaP coatings. In addition to commercially available plasma spraying, other effective routes for the fabrication of hybrid CaP coatings for clinical use still need to be determined and current progress is discussed.
Collapse
Affiliation(s)
- Roman A Surmenev
- Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany.
| | - Maria A Surmeneva
- Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Anna A Ivanova
- Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| |
Collapse
|
14
|
Dorozhkin SV. Calcium orthophosphate coatings, films and layers. Prog Biomater 2012; 1:1. [PMID: 29470670 PMCID: PMC5120666 DOI: 10.1186/2194-0517-1-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 06/14/2012] [Indexed: 11/16/2022] Open
Abstract
In surgical disciplines, where bones have to be repaired, augmented or improved, bone substitutes are essential. Therefore, an interest has dramatically increased in application of synthetic bone grafts. As various interactions among cells, surrounding tissues and implanted biomaterials always occur at the interfaces, the surface properties of the implants are of the paramount importance in determining both the biological response to implants and the material response to the physiological conditions. Hence, a surface engineering is aimed to modify both the biomaterials, themselves, and biological responses through introducing desirable changes to the surface properties of the implants but still maintaining their bulk mechanical properties. To fulfill these requirements, a special class of artificial bone grafts has been introduced in 1976. It is composed of various mechanically stable (therefore, suitable for load bearing applications) biomaterials and/or bio-devices with calcium orthophosphate coatings, films and layers on their surfaces to both improve interactions with the surrounding tissues and provide an adequate bonding to bones. Many production techniques of calcium orthophosphate coatings, films and layers have been already invented and new promising techniques are continuously investigated. These specialized coatings, films and layers used to improve the surface properties of various types of artificial implants are the topic of this review.
Collapse
|
15
|
Surface Engineering for Bone Implants: A Trend from Passive to Active Surfaces. COATINGS 2012. [DOI: 10.3390/coatings2030095] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Rajesh P, Muraleedharan CV, Sureshbabu S, Komath M, Varma H. Preparation and analysis of chemically gradient functional bioceramic coating formed by pulsed laser deposition. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:339-348. [PMID: 22105226 DOI: 10.1007/s10856-011-4501-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/11/2011] [Indexed: 05/31/2023]
Abstract
Bioactive ceramic coatings based on calcium phosphates yield better functionality in the human body for a variety of metallic implant devices including orthopaedic and dental prostheses. In the present study chemically and hence functionally gradient bioceramic coating was obtained by pulsed laser deposition method. Calcium phosphate bioactive ceramic coatings based on hydroxyapatite (HA) and tricalcium phosphate (TCP) were deposited over titanium substrate to produce gradation in physico-chemical characteristics and in vitro dissolution behaviour. Sintered targets of HA and α-TCP were deposited in a multi target laser deposition system. The obtained deposits were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. Inductively coupled plasma spectroscopy was used to estimate the in vitro dissolution behaviour of coatings. The variation in mechanical property of the gradient layer was evaluated through scratch test and micro-indentation hardness. The bioactivity was examined in vitro with respect to the ability of HA layer to form on the surface as a result of contact with simulated body fluid. It could be inferred that chemically gradient functional bioceramic coating can be produced by laser deposition of multiple sintered targets with variable chemical composition.
Collapse
Affiliation(s)
- P Rajesh
- Bioceramics Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum, Kerala, India
| | | | | | | | | |
Collapse
|
17
|
Rajesh P, Muraleedharan CV, Komath M, Varma H. Laser surface modification of titanium substrate for pulsed laser deposition of highly adherent hydroxyapatite. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1671-1679. [PMID: 21598038 DOI: 10.1007/s10856-011-4342-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/09/2011] [Indexed: 05/30/2023]
Abstract
Biomedical implant devices made out of titanium and its alloys are benefited by a modified surface or a bioactive coating to enhance bone bonding ability and to function effectively in vivo for the intended period of time. In this respect hydroxyapatite coating developed through pulsed laser deposition is a promising approach. Since the success of the bioactive ceramic coated implant depends mainly on the substrate-coating strength; an attempt has been made to produce micro patterned surface structure on titanium substrate for adherent hydroxyapatite coating. A pulsed Nd-YAG laser beam (355 nm) with 10 Hz repetition rate was used for surface treatment of titanium as well as hydroxyapatite deposition. The unfocussed laser beam was used to modify the substrate surface with 500-18,000 laser pulses while keeping the polished substrate in water. Hydroxyapatite deposition was done in a vacuum deposition chamber at 400 °C with the focused laser beam under 1 × 10⁻³ mbar oxygen pressure. Deposits were analyzed to understand the physico-chemical, morphological and mechanical characteristics. The obtained substrate and coating surface morphology indicates that laser treatment method can provide controlled micro-topography. Scratch test analysis and microindentation hardness values of coating on laser treated substrate indicate higher mechanical adhesion with respect to coatings on untreated substrates.
Collapse
Affiliation(s)
- P Rajesh
- Bioceramics Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, Kerala, India
| | | | | | | |
Collapse
|