1
|
Kusjuriansah K, Rodhiyah M, Syifa NA, Luthfianti HR, Waresindo WX, Hapidin DA, Suciati T, Edikresnha D, Khairurrijal K. Composite Hydrogel of Poly(vinyl alcohol) Loaded by Citrus hystrix Leaf Extract, Chitosan, and Sodium Alginate with In Vitro Antibacterial and Release Test. ACS OMEGA 2024; 9:13306-13322. [PMID: 38524413 PMCID: PMC10955567 DOI: 10.1021/acsomega.3c10143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
Citrus hystrix leaves have been used traditionally as a spice, a traditional medicine for respiratory and digestive disorders, and a remedy for bacterial infections. This study reports on the synthesis of composite hydrogels using the freeze-thaw method with poly(vinyl alcohol) (PVA) as the building block loaded by C. hystrix leaf extract (CHLE). Additionally, chitosan (CS) and sodium alginate (SA) were also loaded, respectively, to increase the antibacterial activity and to control the extract release of the composite hydrogels. The combinations of the compositions were PVA, PVA/CHLE, PVA/CHLE/CS, PVA/CHLE/SA, and PVA/CHLE/SA/CS. The internal morphology of the hydrogels shows some changes after the PVA/CHLE hydrogel was loaded by CS, SA, and SA/CS. The analysis of the Fourier transform infrared (FTIR) spectra confirmed the presence of PVA, CHLE, CS, and SA in the composite hydrogels. From the X-ray diffraction (XRD) characterization, it was shown that the composite hydrogels maintained their semicrystalline properties with decreasing crystallinity degree after being loaded by CS, SA, and SA/CS, as also supported by differential scanning calorimetry (DSC) characterization. The compressive strength of the PVA/CHLE hydrogel decreases after the loading of CS, SA, and SA/CS, so that it becomes more elastic. Despite being loaded in the composite hydrogels, the CHLE retained its antibacterial activity, as evidenced in the in vitro antibacterial test. The loading of CS succeeded in increasing the antibacterial activity of the composite hydrogels, while the loading of SA resulted in the decrease of the antibacterial activity. The release of extract from the composite hydrogels was successfully slowed down after the loading of CS, SA, and SA/CS, resulting in a controlled release following the pseudo-Fickian diffusion. The cytotoxic activity test proved that all hydrogel samples can be used safely on normal cells up to concentrations above 1000 μg/mL.
Collapse
Affiliation(s)
- Kusjuriansah Kusjuriansah
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Marathur Rodhiyah
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Nabila Asy Syifa
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Halida Rahmi Luthfianti
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - William Xaveriano Waresindo
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Dian Ahmad Hapidin
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Tri Suciati
- Department
of Pharmaceutics, School of Pharmacy, Institut
Teknologi Bandung, Jalan
Ganesa 10, Bandung 40132, Indonesia
| | - Dhewa Edikresnha
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
- University
Center of Excellence—Nutraceutical, Bioscience and Biotechnology
Research Center, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Khairurrijal Khairurrijal
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
- University
Center of Excellence—Nutraceutical, Bioscience and Biotechnology
Research Center, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
- Department
of Physics, Faculty of Sciences, Institut
Teknologi Sumatera, Jl.
Terusan Ryacudu, Lampung 35365, Indonesia
| |
Collapse
|
2
|
Hakimi F, Sharifyrad M, Safari H, khanmohammadi A, Gohari S, Ramazani A. Amygdalin/chitosan-polyvinyl alcohol/cerium-tannic acid hydrogel as biodegradable long-time implant for cancer recurrence care applications: An in vitro study. Heliyon 2023; 9:e21835. [PMID: 38027646 PMCID: PMC10658248 DOI: 10.1016/j.heliyon.2023.e21835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer recurrence following surgery is a serious and worrying problem for the patient. Common treatment strategies, such as chemotherapy, radiotherapy, and surgery, are restricted because of low uptake of the drugs, poor pharmacokinetic properties, and toxicity issues for healthy tissues. The development of engineering platforms for improving the postoperative treatment of cancer can help solve this problem. In this study, the ceria-tannic acid nanoparticles (CeTA-NPs) were successfully synthesized and characterized. Chitosan-polyvinyl/alcohol (CS-PVA) hydrogels containing CeTA NPs (CS-PVA/CeTA) and amygdalin as an anticancer substance were fabricated using freeze-thaw and immersion-drying techniques. The swelling and degradation behaviors, antibacterial activity, and biocompatibility of as-prepared hydrogel were done. The apoptotic effects of amygdalin/CS-PVA/CeTA hydrogel were evaluated by flow cytometry technique on a human colorectal cancer (SW-480) cell line. The CeTA-NPs were investigated as antibacterial and cross-linker agents for greater stability of the hydrogel network. The CS-PVA/CeTA hydrogel demonstrated good safety and antibacterial activity. The results of swelling and biodegradation suggest that CS-PVA/CeTA hydrogels can inspire long-time application. The anticancer effects of the amygdalin/CS-PVA/CeTA hydrogel were confirmed by apoptosis results. Hence, amygdalin/CS-PVA/CeTA hydrogel can be a promising candidate for long-time biomedical application.
Collapse
Affiliation(s)
- Fatemeh Hakimi
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Motahare Sharifyrad
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hajar Safari
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Akram khanmohammadi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sepehr Gohari
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Ramazani
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
3
|
Elkenawy NM, Karam HM, Aboul-Magd DS. Development of gamma irradiated SSD-embedded hydrogel dyed with prodigiosin as a smart wound dressing: Evaluation in a MDR infected burn rat model. Int J Biol Macromol 2022; 211:170-182. [DOI: 10.1016/j.ijbiomac.2022.05.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 11/25/2022]
|
4
|
Farazin A, Mohammadimehr M, Ghasemi AH, Naeimi H. Design, preparation, and characterization of CS/PVA/SA hydrogels modified with mesoporous Ag 2O/SiO 2 and curcumin nanoparticles for green, biocompatible, and antibacterial biopolymer film. RSC Adv 2021; 11:32775-32791. [PMID: 35493577 PMCID: PMC9042220 DOI: 10.1039/d1ra05153a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
One of the most significant factors affecting the rapid and effective healing of wounds is the application of appropriate wound dressings. In the present study, novel antibacterial wound dressings are fabricated that consist of Chitosan (CS)/Polyvinyl alcohol (PVA)/Sodium Alginate (SA), which are all biocompatible, functionalized with mesoporous Ag2O/SiO2 and curcumin nanoparticles as reinforcements. In this research nanocomposites are fabricated (0 wt%, 5 wt%, 10 wt%, 15 wt%, and 20 wt% of Ag2O/SiO2). After the composition of nanocomposites using the cross-linked technique, Fourier Transform Infrared (FT-IR) spectroscopy is performed to confirm the functional groups that are added to the polymer at each step. X-ray diffraction (XRD) is done to show the crystallinity of Ag2O/SiO2. Field emission scanning electron microscopy (FE-SEM) studies are performed to demonstrate the morphology of the structure, Energy-dispersive X-ray spectroscopy (EDS) is done to examine the elements in the wound dressing and atomic force microscopy (AFM) study is performed to show surface roughness and pores. Then the nanocomposites with different weight percentages are cultured in three bacteria called Acinetobacter baumannii, Staphylococcus epidermidis, and Proteus mirabilis, all three of which cause skin infections. Finally, by performing the tensile test, the results related to the tensile strength of the wound dressings are examined. The results show that with the increase of Ag2O/SiO2, the mechanical properties, as well as the healing properties of the wound dressing, have increased significantly. Fabricating these nanocomposites helps a lot in treating skin infections.
Collapse
Affiliation(s)
- Ashkan Farazin
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan P.O. Box 87317-53153 Kashan Iran
| | - Mehdi Mohammadimehr
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan P.O. Box 87317-53153 Kashan Iran
| | - Amir Hossein Ghasemi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box 87317-53153 Kashan Iran
| | - Hossein Naeimi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box 87317-53153 Kashan Iran
| |
Collapse
|
5
|
Massarelli E, Silva D, Pimenta AFR, Fernandes AI, Mata JLG, Armês H, Salema-Oom M, Saramago B, Serro AP. Polyvinyl alcohol/chitosan wound dressings loaded with antiseptics. Int J Pharm 2020; 593:120110. [PMID: 33246052 DOI: 10.1016/j.ijpharm.2020.120110] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/27/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Wound care remains a challenge in healthcare. This work aimed to develop a new polyvinyl alcohol (PVA)/chitosan (Ch) based wound dressing able to ensure protection, hydration and a controlled release of antiseptics, as alternative to actual treatments. Two distinct formulations (1:1 and 3:1, w/w) were prepared, sterilized by autoclaving and characterized concerning surface morphology, degradation over the time, mechanical properties and hydrophilicity. Both dressings revealed adequate properties for the intended purpose. The dressings were loaded with chlorhexidine (CHX) and polyhexanide (PHMB) and the drug release profiles were determined using Franz diffusion cells. The release of PHMB was more sustained than CHX, lasting for 2 days. As the amounts of drugs released by PVA/Ch 1:1 were greater, the biological tests were done only with this formulation. The drug loaded dressings revealed antibacterial activity against S. aureus and S. epidermidis, but only the ones loaded with PHMB showed adequate properties in terms of cytotoxicity and irritability. The application of this elastic dressing in the treatment of wounds in a dog led to faster recovery than conventional treatment, suggesting that the material can be a promising alternative in wound care.
Collapse
Affiliation(s)
- E Massarelli
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - D Silva
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - A F R Pimenta
- Bioceramed, Rua José Gomes Ferreira n° 1 - Armazém D, 2660-360 São Julião do Tojal, Loures, Portugal.
| | - A I Fernandes
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - J L G Mata
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - H Armês
- Hospital Veterinário de S. Bento, Rua de S. Bento, 358-A, 1200-822 Lisboa, Portugal
| | - M Salema-Oom
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - B Saramago
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - A P Serro
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal.
| |
Collapse
|
6
|
Kalantari K, Mostafavi E, Saleh B, Soltantabar P, Webster TJ. Chitosan/PVA hydrogels incorporated with green synthesized cerium oxide nanoparticles for wound healing applications. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109853] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Jahanabadi R, Sheikh N, Mahdavi H, Bagheri R. Effect of electron‐beam irradiation followed by annealing on the physical properties of poly(vinyl alcohol)–chitosan blend films at different weight ratios. J Appl Polym Sci 2019. [DOI: 10.1002/app.47820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Robabe Jahanabadi
- Polymer Group, Chemical Engineering DepartmentIsfahan University of Technology Isfahan Iran
| | - Nasrin Sheikh
- Radiation Application Research SchoolNuclear Science and Technology Research Institute, P.O. Box 11365‐3486 Tehran Iran
| | - Hamid Mahdavi
- Novel Drug Delivery Systems DepartmentPolymer Science Faculty, Iran Polymer and Petrochemical Institute, P.O. Box 14965‐115 Tehran Iran
| | - Rouhollah Bagheri
- Polymer Group, Chemical Engineering DepartmentIsfahan University of Technology Isfahan 84156‐83111 Iran
| |
Collapse
|
8
|
The synergistic effect of gamma irradiation and alkaline soaking at low temperature on the pre-deacetylation of α-chitin: Optimization by design of experiment. Carbohydr Polym 2019; 215:39-46. [DOI: 10.1016/j.carbpol.2019.03.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/13/2019] [Accepted: 03/17/2019] [Indexed: 11/22/2022]
|
9
|
Fabrication of polylactic acid/carbon nanotubes/chitosan composite fibers by electrospinning for strawberry preservation. Int J Biol Macromol 2019; 121:1329-1336. [DOI: 10.1016/j.ijbiomac.2018.09.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/30/2018] [Accepted: 09/07/2018] [Indexed: 12/19/2022]
|
10
|
Amri N, Radji S, Ghemati D, Djamel A. Studies on equilibrium swelling, dye adsorption, and dynamic shear rheology of polymer systems based on chitosan-poly(vinyl alcohol) and montmorillonite. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2018.1521391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nedjla Amri
- Laboratory of Polymers Treatment & Forming, Faculty of Science Engineering, M’Hamed Bougara University of Boumerdes, Boumerdes, Algeria
| | - Sadia Radji
- IPREM UMR 5254, Université de Pau et des pays de l'Adour, Pau, France
| | - Djamila Ghemati
- Laboratory of Polymers Treatment & Forming, Faculty of Science Engineering, M’Hamed Bougara University of Boumerdes, Boumerdes, Algeria
| | - Aliouche Djamel
- Laboratory of Polymers Treatment & Forming, Faculty of Science Engineering, M’Hamed Bougara University of Boumerdes, Boumerdes, Algeria
| |
Collapse
|
11
|
Rafique A, Mahmood Zia K, Zuber M, Tabasum S, Rehman S. Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications: A review. Int J Biol Macromol 2016; 87:141-54. [DOI: 10.1016/j.ijbiomac.2016.02.035] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 01/27/2023]
|
12
|
Sakai S, Khanmohammadi M, Khoshfetrat AB, Taya M. Horseradish peroxidase-catalyzed formation of hydrogels from chitosan and poly(vinyl alcohol) derivatives both possessing phenolic hydroxyl groups. Carbohydr Polym 2014; 111:404-9. [PMID: 25037368 DOI: 10.1016/j.carbpol.2014.05.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 11/16/2022]
Abstract
Horseradish peroxidase-catalyzed cross-linking was applied to prepare hydrogels from aqueous solutions containing chitosan and poly(vinyl alcohol) derivatives both possessing phenolic hydroxyl groups (denoted as Ph-chitosan and Ph-PVA, respectively). Comparing the hydrogels prepared from the solution of 1.0% (w/v) Ph-chitosan and 3.0% (w/v) Ph-PVA and that of 3.0% (w/v) Ph-chitosan and 1.0% (w/v) Ph-PVA, the gelation time of the former hydrogel was 47 s, while was 10s longer than that of the latter one. The breaking point for the former hydrogel under stretching (114% strain) was approximately twice larger than that for the latter one. The swelling ratio of the former hydrogel in saline was about half of the latter one. Fibroblastic cells did not adhere on the former hydrogel but adhered and spread on the latter one. The growth of Escherichia coli cells was fully suppressed on the latter hydrogel during 48 h cultivation.
Collapse
Affiliation(s)
- Shinji Sakai
- Division of Chemical Engineering, Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| | - Mehdi Khanmohammadi
- Department of Chemical Engineering, Sahand University of Technology, Tabriz 51335-1996, Iran
| | - Ali Baradar Khoshfetrat
- Department of Chemical Engineering, Sahand University of Technology, Tabriz 51335-1996, Iran
| | - Masahito Taya
- Division of Chemical Engineering, Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
13
|
Krstić J, Spasojević J, Radosavljević A, Šiljegovć M, Kačarević-Popović Z. Optical and structural properties of radiolytically in situ synthesized silver nanoparticles stabilized by chitosan/poly(vinyl alcohol) blends. Radiat Phys Chem Oxf Engl 1993 2014. [DOI: 10.1016/j.radphyschem.2013.09.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Taşkın P, Canısağ H, Şen M. The effect of degree of deacetylation on the radiation induced degradation of chitosan. Radiat Phys Chem Oxf Engl 1993 2014. [DOI: 10.1016/j.radphyschem.2013.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 2013; 34:8533-54. [PMID: 23953781 DOI: 10.1016/j.biomaterials.2013.07.089] [Citation(s) in RCA: 771] [Impact Index Per Article: 70.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 07/26/2013] [Indexed: 02/06/2023]
Abstract
Anti-infective biomaterials need to be tailored according to the specific clinical application. All their properties have to be tuned to achieve the best anti-infective performance together with safe biocompatibility and appropriate tissue interactions. Innovative technologies are developing new biomaterials and surfaces endowed with anti-infective properties, relying either on antifouling, or bactericidal, or antibiofilm activities. This review aims at thoroughly surveying the numerous classes of antibacterial biomaterials and the underlying strategies behind them. Bacteria repelling and antiadhesive surfaces, materials with intrinsic antibacterial properties, antibacterial coatings, nanostructured materials, and molecules interfering with bacterial biofilm are considered. Among the new strategies, the use of phages or of antisense peptide nucleic acids are discussed, as well as the possibility to modulate the local immune response by active cytokines. Overall, there is a wealth of technical solutions to contrast the establishment of an implant infection. Many of them exhibit a great potential in preclinical models. The lack of well-structured prospective multicenter clinical trials hinders the achievement of conclusive data on the efficacy and comparative performance of anti-infective biomaterials.
Collapse
Affiliation(s)
- Davide Campoccia
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | | | | |
Collapse
|
16
|
Evaluation of healing activity of PVA/chitosan hydrogels on deep second degree burn: pharmacological and toxicological tests. Burns 2012; 39:98-104. [PMID: 22738824 DOI: 10.1016/j.burns.2012.05.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/28/2012] [Indexed: 11/24/2022]
Abstract
Hydrogel based on poly(vinyl alcohol) containing 0.25% of chitosan was synthesized by gamma irradiation and evaluated as wound dressing material in a burn rat model. Histological analyses, Primary Irritation Index (P.I.I.) and Ocular Irritation Index (O.I.I.) were investigated. The comparative study showed that the wounds treated with PVA/chitosan hydrogel healed on the 9th day, while those treated with paraffin gauze dressing and cotton gauze healed on the 16th day. Histological analysis showed that new granulation tissue and epithelialization progressed better in wound treated with hydrogel PVA/chitosan. The determined values of P.I.I. and O.I.I. of the PVA/chitosan hydrogel were, respectively 0.5 and zero. These values indicate that the PVA/chitosan hydrogel can be considered as non-irritating to the skin.
Collapse
|
17
|
Effect of molecular weight on radiation chemical degradation yield of chain scission of γ-irradiated chitosan in solid state and in aqueous solution. Radiat Phys Chem Oxf Engl 1993 2012. [DOI: 10.1016/j.radphyschem.2012.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|