1
|
Biomimetic nanostructures/cues as drug delivery systems: a review. MATERIALS TODAY CHEMISTRY 2019. [DOI: 10.1016/j.mtchem.2019.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
2
|
Tresoldi C, Pacheco DP, Formenti E, Pellegata AF, Mantero S, Petrini P. Shear-resistant hydrogels to control permeability of porous tubular scaffolds in vascular tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110035. [PMID: 31546369 DOI: 10.1016/j.msec.2019.110035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 06/18/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022]
Abstract
Aiming to perfuse porous tubular scaffolds for vascular tissue engineering (VTE) with controlled flow rate, prevention of leakage through the scaffold lumen is required. A gel coating made of 8% w/v alginate and 6% w/v gelatin functionalized with fibronectin was produced using a custom-made bioreactor-based method. Different volumetric proportions of alginate and gelatin were tested (50/50, 70/30, and 90/10). Gel swelling and stability, and rheological, and uniaxial tensile tests reveal superior resistance to the aggressive biochemical microenvironment, and their ability to withstand physiological deformations (~10%) and wall shear stresses (5-20 dyne/cm2). These are prerequisites to maintain the physiologic phenotypes of vascular smooth muscle cells and endothelial cells (ECs), mimicking blood vessels microenvironment. Gels can induce ECs proliferation and colonization, especially in the presence of fibronectin and higher percentages of gelatin. The custom-designed bioreactor enables the development of reproducible and homogeneous tubular gel coating. The permeability tests show the effectiveness of tubular scaffolds coated with 70/30 alginate/gelatin gel to occlude wadding pores, and therefore prevent leakages. The synthesized double-layered tubular scaffolds coated with alginate/gelatin gel and fibronectin represent both promising substrate for ECs and effective leakproof scaffolds, when subjected to pulsatile perfusion, for VTE applications.
Collapse
Affiliation(s)
- Claudia Tresoldi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, 'G. Natta' Politecnico di Milano, Piazza L. da Vinci, Milano, Italy
| | - Daniela P Pacheco
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, 'G. Natta' Politecnico di Milano, Piazza L. da Vinci, Milano, Italy
| | - Elisa Formenti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, 'G. Natta' Politecnico di Milano, Piazza L. da Vinci, Milano, Italy
| | - Alessandro Filippo Pellegata
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, 'G. Natta' Politecnico di Milano, Piazza L. da Vinci, Milano, Italy
| | - Sara Mantero
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, 'G. Natta' Politecnico di Milano, Piazza L. da Vinci, Milano, Italy.
| | - Paola Petrini
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, 'G. Natta' Politecnico di Milano, Piazza L. da Vinci, Milano, Italy
| |
Collapse
|
3
|
Zhang D, Wang Y. Functional Protein-Based Bioinspired Nanomaterials: From Coupled Proteins, Synthetic Approaches, Nanostructures to Applications. Int J Mol Sci 2019; 20:E3054. [PMID: 31234528 PMCID: PMC6627797 DOI: 10.3390/ijms20123054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
Protein-based bioinspired nanomaterials (PBNs) combines the advantage of the size, shape, and surface chemistry of nanomaterials, the morphology and functions of natural materials, and the physical and chemical properties of various proteins. Recently, there are many exciting developments on biomimetic nanomaterials using proteins for different applications including, tissue engineering, drug delivery, diagnosis and therapy, smart materials and structures, and water collection and separation. Protein-based biomaterials with high biocompatibility and biodegradability could be modified to obtain the healing effects of natural organisms after injury by mimicking the extracellular matrix. For cancer and other diseases that are difficult to cure now, new therapeutic methods involving different kinds of biomaterials are studied. The nanomaterials with surface modification, which can achieve high drug loading, can be used as drug carriers to enhance target and trigger deliveries. For environment protection and the sustainability of the world, protein-based nanomaterials are also applied for water treatment. A wide range of contaminants from natural water source, such as organic dyes, oil substances, and multiple heavy ions, could be absorbed by protein-based nanomaterials. This review summarizes the formation and application of functional PBNs, and the details of their nanostructures, the proteins involved, and the synthetic approaches are addressed.
Collapse
Affiliation(s)
- Dong Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hum, Kowloon 999077, Hong Kong.
| | - Yi Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hum, Kowloon 999077, Hong Kong.
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057, China.
| |
Collapse
|
4
|
J. B, Chanda K, M.M. B. Revisiting the insights and applications of protein engineered hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 95:312-327. [DOI: 10.1016/j.msec.2018.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 09/15/2018] [Accepted: 11/01/2018] [Indexed: 12/19/2022]
|
5
|
Biocatalysis by Transglutaminases: A Review of Biotechnological Applications. MICROMACHINES 2018; 9:mi9110562. [PMID: 30715061 PMCID: PMC6265872 DOI: 10.3390/mi9110562] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 02/08/2023]
Abstract
The biocatalytic activity of transglutaminases (TGs) leads to the synthesis of new covalent isopeptide bonds (crosslinks) between peptide-bound glutamine and lysine residues, but also the transamidation of primary amines to glutamine residues, which ultimately can result into protein polymerisation. Operating with a cysteine/histidine/aspartic acid (Cys/His/Asp) catalytic triad, TGs induce the post-translational modification of proteins at both physiological and pathological conditions (e.g., accumulation of matrices in tissue fibrosis). Because of the disparate biotechnological applications, this large family of protein-remodelling enzymes have stimulated an escalation of interest. In the past 50 years, both mammalian and microbial TGs polymerising activity has been exploited in the food industry for the improvement of aliments' quality, texture, and nutritive value, other than to enhance the food appearance and increased marketability. At the same time, the ability of TGs to crosslink extracellular matrix proteins, like collagen, as well as synthetic biopolymers, has led to multiple applications in biomedicine, such as the production of biocompatible scaffolds and hydrogels for tissue engineering and drug delivery, or DNA-protein bio-conjugation and antibody functionalisation. Here, we summarise the most recent advances in the field, focusing on the utilisation of TGs-mediated protein multimerisation in biotechnological and bioengineering applications.
Collapse
|
6
|
Zhao J, Yan Y, Shang Y, Du Y, Long L, Yuan X, Hou X. Thermosensitive elastin-derived polypeptide hydrogels crosslinked by genipin. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1217534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, P. R. China
| | - Yufang Yan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, P. R. China
| | - Yuezai Shang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, P. R. China
| | - Yang Du
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, P. R. China
| | - Lixia Long
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, P. R. China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, P. R. China
| | - Xin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
7
|
Celikkin N, Rinoldi C, Costantini M, Trombetta M, Rainer A, Święszkowski W. Naturally derived proteins and glycosaminoglycan scaffolds for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1277-1299. [PMID: 28575966 DOI: 10.1016/j.msec.2017.04.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 12/25/2022]
Abstract
Tissue engineering (TE) aims to mimic the complex environment where organogenesis takes place using advanced materials to recapitulate the tissue niche. Cells, three-dimensional scaffolds and signaling factors are the three main and essential components of TE. Over the years, materials and processes have become more and more sophisticated, allowing researchers to precisely tailor the final chemical, mechanical, structural and biological features of the designed scaffolds. In this review, we will pose the attention on two specific classes of naturally derived polymers: fibrous proteins and glycosaminoglycans (GAGs). These materials hold great promise for advances in the field of regenerative medicine as i) they generally undergo a fast remodeling in vivo favoring neovascularization and functional cells organization and ii) they elicit a negligible immune reaction preventing severe inflammatory response, both representing critical requirements for a successful integration of engineered scaffolds with the host tissue. We will discuss the recent achievements attained in the field of regenerative medicine by using proteins and GAGs, their merits and disadvantages and the ongoing challenges to move the current concepts to practical clinical application.
Collapse
Affiliation(s)
- Nehar Celikkin
- Warsaw University of Technology, Faculty of Material Science and Engineering, 141 Woloska str., 02-507 Warsaw, Poland
| | - Chiara Rinoldi
- Warsaw University of Technology, Faculty of Material Science and Engineering, 141 Woloska str., 02-507 Warsaw, Poland
| | - Marco Costantini
- Tissue Engineering Unit, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Marcella Trombetta
- Tissue Engineering Unit, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Alberto Rainer
- Tissue Engineering Unit, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Wojciech Święszkowski
- Warsaw University of Technology, Faculty of Material Science and Engineering, 141 Woloska str., 02-507 Warsaw, Poland.
| |
Collapse
|
8
|
Sheikhpour M, Barani L, Kasaeian A. Biomimetics in drug delivery systems: A critical review. J Control Release 2017; 253:97-109. [PMID: 28322976 DOI: 10.1016/j.jconrel.2017.03.026] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 11/19/2022]
Abstract
Today, the advanced drug delivery systems have been focused on targeted drug delivery fields. The novel drug delivery is involved with the improvement of the capacity of drug loading in drug carriers, cellular uptake of drug carriers, and the sustained release of drugs within target cells. In this review, six groups of therapeutic drug carriers including biomimetic hydrogels, biomimetic micelles, biomimetic liposomes, biomimetic dendrimers, biomimetic polymeric carriers and biomimetic nanostructures, are studied. The subject takes advantage of the biomimetic methods of productions or the biomimetic techniques for the surface modifications, similar to what accrues in natural cells. Moreover, the effects of these biomimetic approaches for promoting the drug efficiency in targeted drug delivery are visible. The study demonstrates that the fabrication of biomimetic nanocomposite drug carriers could noticeably promote the efficiency of drugs in targeted drug delivery systems.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Faculty of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Leila Barani
- Faculty of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Alibakhsh Kasaeian
- Faculty of New Science & Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Myoblast adhesion, proliferation and differentiation on human elastin-like polypeptide (HELP) hydrogels. J Appl Biomater Funct Mater 2017; 15:e43-e53. [PMID: 27791230 DOI: 10.5301/jabfm.5000331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The biochemical, mechanical and topographic properties of extracellular matrix are crucially involved in determining skeletal muscle cell morphogenesis, proliferation and differentiation. Human elastin-like polypeptides (HELPs) are recombinant biomimetic proteins designed to mimic some properties of the native matrix protein; when employed as myoblast adhesion substrates, they stimulate in vitro myogenesis. Given the influence that the biophysical properties of extracellular matrix have on skeletal muscle cells, the aim of this work was to investigate the effects of HELP hydrogels on myoblasts' viability and functions. METHODS We recently synthesized a novel polypeptide, HELPc, by fusing the elastin-like backbone to a 41aa sequence present in the α2 chain of type IV collagen, containing two arginyl-glycyl-aspartic acid (RGD) motifs. To obtain hydrogels, the enzymatic cross-linking of the HELPc was accomplished by transglutaminase. Here, we employed both non-cross-linked HELPc glass coatings and cross-linked HELPc hydrogels at different monomer densities, as adhesion substrates for C2C12 cells, used as a myoblast model. RESULTS By comparing cell adhesion, proliferation and differentiation, we revealed several striking differences. Depending on support rigidity, adhesion to HELPc substrates dictated cell morphology, spreading, focal adhesion formation and cytoskeletal organization. Hydrogels greatly stimulated cell proliferation, particularly in low-serum medium, and partially inhibited myogenic differentiation. CONCLUSIONS On the whole, the results underline the potential of these genetically engineered polypeptides as a tool for dissecting crucial steps in myogenesis.
Collapse
|
10
|
Domeradzka NE, Werten MWT, Wolf FAD, de Vries R. Protein cross-linking tools for the construction of nanomaterials. Curr Opin Biotechnol 2016; 39:61-67. [DOI: 10.1016/j.copbio.2016.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 12/26/2022]
|
11
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
12
|
Yeo GC, Aghaei-Ghareh-Bolagh B, Brackenreg EP, Hiob MA, Lee P, Weiss AS. Fabricated Elastin. Adv Healthc Mater 2015; 4:2530-2556. [PMID: 25771993 PMCID: PMC4568180 DOI: 10.1002/adhm.201400781] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/09/2015] [Indexed: 12/18/2022]
Abstract
The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement.
Collapse
Affiliation(s)
- Giselle C. Yeo
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Behnaz Aghaei-Ghareh-Bolagh
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Edwin P. Brackenreg
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Matti A. Hiob
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Pearl Lee
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Anthony S. Weiss
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
- Bosch Institute, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Girotti A, Orbanic D, Ibáñez-Fonseca A, Gonzalez-Obeso C, Rodríguez-Cabello JC. Recombinant Technology in the Development of Materials and Systems for Soft-Tissue Repair. Adv Healthc Mater 2015; 4:2423-55. [PMID: 26172311 DOI: 10.1002/adhm.201500152] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/04/2015] [Indexed: 12/16/2022]
Abstract
The field of biomedicine is constantly investing significant research efforts in order to gain a more in-depth understanding of the mechanisms that govern the function of body compartments and to develop creative solutions for the repair and regeneration of damaged tissues. The main overall goal is to develop relatively simple systems that are able to mimic naturally occurring constructs and can therefore be used in regenerative medicine. Recombinant technology, which is widely used to obtain new tailored synthetic genes that express polymeric protein-based structures, now offers a broad range of advantages for that purpose by permitting the tuning of biological and mechanical properties depending on the intended application while simultaneously ensuring adequate biocompatibility and biodegradability of the scaffold formed by the polymers. This Progress Report is focused on recombinant protein-based materials that resemble naturally occurring proteins of interest for use in soft tissue repair. An overview of recombinant biomaterials derived from elastin, silk, collagen and resilin is given, along with a description of their characteristics and suggested applications. Current endeavors in this field are continuously providing more-improved materials in comparison with conventional ones. As such, a great effort is being made to put these materials through clinical trials in order to favor their future use.
Collapse
Affiliation(s)
- Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Doriana Orbanic
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Arturo Ibáñez-Fonseca
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Constancio Gonzalez-Obeso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| |
Collapse
|
14
|
Yigit S, Dinjaski N, Kaplan DL. Fibrous proteins: At the crossroads of genetic engineering and biotechnological applications. Biotechnol Bioeng 2015; 113:913-29. [PMID: 26332660 DOI: 10.1002/bit.25820] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/27/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022]
Abstract
Fibrous proteins, such as silk, elastin and collagen are finding broad impact in biomaterial systems for a range of biomedical and industrial applications. Some of the key advantages of biosynthetic fibrous proteins compared to synthetic polymers include the tailorability of sequence, protein size, degradation pattern, and mechanical properties. Recombinant DNA production and precise control over genetic sequence of these proteins allows expansion and fine tuning of material properties to meet the needs for specific applications. We review current approaches in the design, cloning, and expression of fibrous proteins, with a focus on strategies utilized to meet the challenges of repetitive fibrous protein production. We discuss recent advances in understanding the fundamental basis of structure-function relationships and the designs that foster fibrous protein self-assembly towards predictable architectures and properties for a range of applications. We highlight the potential of functionalization through genetic engineering to design fibrous protein systems for biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Sezin Yigit
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155.,Department of Chemistry, Tufts University, Somerville, Massachusetts, 02145
| | - Nina Dinjaski
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155.
| |
Collapse
|
15
|
TURNER PAULA, JOSHI GAURAVV, WEEKS CANDREW, WILLIAMSON RSCOTT, PUCKETT AAROND, JANORKAR AMOLV. NANO AND MICRO-STRUCTURES OF ELASTIN-LIKE POLYPEPTIDE-BASED MATERIALS AND THEIR APPLICATIONS: RECENT DEVELOPMENTS. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793984413430022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Elastin-like polypeptide (ELP) containing materials have spurred significant research interest for biomedical applications exploiting their biocompatible, biodegradable and nonimmunogenic nature while maintaining precise control over their chemical structure and functionality through genetic engineering. Physical, mechanical and biological properties of ELPs could be further manipulated using genetic engineering or through conjugation with a variety of chemical moieties. These chemical and physical modifications also achieve interesting micro- and nanostructured ELP-based materials. Here, we review the recent developments during the past decade in the methods to engineer elastin-like materials, available genetic and chemical modification methods and applications of ELP micro and nanostructures in tissue engineering and drug delivery.
Collapse
Affiliation(s)
- PAUL A. TURNER
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - GAURAV V. JOSHI
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - C. ANDREW WEEKS
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - R. SCOTT WILLIAMSON
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - AARON D. PUCKETT
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - AMOL V. JANORKAR
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| |
Collapse
|
16
|
Bandiera A, Markulin A, Corich L, Vita F, Borelli V. Stimuli-Induced Release of Compounds from Elastin Biomimetic Matrix. Biomacromolecules 2013; 15:416-22. [DOI: 10.1021/bm401677n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Antonella Bandiera
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Ana Markulin
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Lucia Corich
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Francesca Vita
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Violetta Borelli
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
17
|
Ciofani G, Genchi GG, Guardia P, Mazzolai B, Mattoli V, Bandiera A. Recombinant human elastin-like magnetic microparticles for drug delivery and targeting. Macromol Biosci 2013; 14:632-42. [PMID: 24318291 DOI: 10.1002/mabi.201300361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/12/2013] [Indexed: 11/10/2022]
Abstract
Bioinspired recombinant polypeptides represent a highly promising tool in biomedical research, being protein intrinsic constituents of both cells and their natural matrices. In this regard, a very interesting model is represented by polypeptides inspired by elastin, which naturally confers rubber-like elasticity to tissues, and is able to undergo wide deformations without rupture. In this paper, a microparticle system based on a recombinant human elastin-like polypeptide (HELP) is reported for drug delivery applications. HELP microparticles are prepared through a water-in-oil emulsion of an aqueous solution of recombinant polypeptide in isoctane, followed by enzymatic cross-linking. Superparamagnetic iron oxide nanoparticles are introduced in this system with the purpose of conferring magnetic properties to the microspheres, and thus controlling their targeting and tracking as drug vectors. The obtained microparticles are characterized in terms of morphology, structure, magnetic properties, drug release, and magnetic drivability, showing interesting and promising results for further biomedical applications.
Collapse
Affiliation(s)
- Gianni Ciofani
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @SSSA, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Hauptmann V, Weichert N, Rakhimova M, Conrad U. Spider silks from plants - a challenge to create native-sized spidroins. Biotechnol J 2013; 8:1183-92. [DOI: 10.1002/biot.201300204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/17/2013] [Accepted: 08/27/2013] [Indexed: 11/06/2022]
|
19
|
Shang Y, Yan Y, Hou X. Stimuli responsive elastin-like polypeptides and applications in medicine and biotechnology. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 25:101-20. [DOI: 10.1080/09205063.2013.841073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Jeon WB. Application of elastin-mimetic recombinant proteins in chemotherapeutics delivery, cellular engineering, and regenerative medicine. Bioengineered 2013; 4:368-73. [PMID: 23475122 PMCID: PMC3937197 DOI: 10.4161/bioe.24158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
With the remarkable increase in the fields of biomedical engineering and regenerative medicine, biomaterial design has become an indispensable approach for developing the biocompatible carriers for drug or gene cargo and extracellular matrix (ECM) for cell survival, proliferation and differentiation. Native ECM materials derived from animal tissues were believed to be the best choices for tissue engineering. However, possible pathogen contamination by cellular remnants from foreign animal tissues is an unavoidable issue that has limited the use of native ECM for human benefit. Some synthetic polymers have been used as alternative materials for manufacturing native ECM because of the biodegradability and ease of large-scale production of the polymers. However, the inherent polydispersity of the polymers causes batch-to-batch variation in polymer composition and possible cytotoxic interactions between chemical matrices and neighboring cells or tissues have not yet been fully resolved. Elastin-like proteins (ELPs) are genetically engineered biopolymers modeled after the naturally occurring tropoelastin and have emerged as promising materials for biomedical applications because they are biocompatible, non-immunogenic and biodegradable, and their composition, mechanical stiffness and even fate within the cell can be controlled at the gene level. This commentary highlights the recent progresses in the development of the ELP-based recombinant proteins that are being increasingly used for the delivery of chemotherapeutics and to provide a cell-friendly ECM environment.
Collapse
Affiliation(s)
- Won Bae Jeon
- Laboratory of Biochemistry and Cellular Engineering; Division of NanoBio Technology; Daegu Gyeongbuk Institute of Science and Technology; Daegu, South Korea
| |
Collapse
|
21
|
Ciofani G, Genchi GG, Liakos I, Athanassiou A, Mattoli V, Bandiera A. Human recombinant elastin-like protein coatings for muscle cell proliferation and differentiation. Acta Biomater 2013; 9:5111-21. [PMID: 23085563 DOI: 10.1016/j.actbio.2012.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/12/2012] [Accepted: 10/11/2012] [Indexed: 12/31/2022]
Abstract
Recombinant proteins represent a new and promising class of polymeric materials in the field of biomaterials research. An important model for biomaterial design is elastin, the protein accounting for the elasticity of several tissues. Human elastin-like polypeptides (HELPs) have been developed as recombinant versions of elastin with the purpose of enhancing some peculiar characteristics of the native protein, like self-assembling. In this paper, we report on a comparative study of rat myoblasts response to coatings based on two different HELP macromolecules, with respect to control cultures on bare cell culture polystyrene and on a standard collagen coating. Cell behavior was analyzed in terms of adhesion, proliferation and differentiation. The collected data strongly suggest the use of HELPs as excellent biomaterials for tissue engineering and regenerative medicine applications.
Collapse
|