1
|
Jiménez-Pérez A, Martínez-Alonso M, García-Tojal J. Hybrid Hydroxyapatite-Metal Complex Materials Derived from Amino Acids and Nucleobases. Molecules 2024; 29:4479. [PMID: 39339474 PMCID: PMC11434463 DOI: 10.3390/molecules29184479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Calcium phosphates (CaPs) and their substituted derivatives encompass a large number of compounds with a vast presence in nature that have aroused a great interest for decades. In particular, hydroxyapatite (HAp, Ca10(OH)2(PO4)6) is the most abundant CaP mineral and is significant in the biological world, at least in part due to being a major compound in bones and teeth. HAp exhibits excellent properties, such as safety, stability, hardness, biocompatibility, and osteoconductivity, among others. Even some of its drawbacks, such as its fragility, can be redirected thanks to another essential feature: its great versatility. This is based on the compound's tendency to undergo substitutions of its constituent ions and to incorporate or anchor new molecules on its surface and pores. Thus, its affinity for biomolecules makes it an optimal compound for multiple applications, mainly, but not only, in biological and biomedical fields. The present review provides a chemical and structural context to explain the affinity of HAp for biomolecules such as proteins and nucleic acids to generate hybrid materials. A size-dependent criterium of increasing complexity is applied, ranging from amino acids/nucleobases to the corresponding macromolecules. The incorporation of metal ions or metal complexes into these functionalized compounds is also discussed.
Collapse
Affiliation(s)
| | | | - Javier García-Tojal
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.J.-P.); (M.M.-A.)
| |
Collapse
|
2
|
Dick TA, Sone ED, Uludağ H. Mineralized vectors for gene therapy. Acta Biomater 2022; 147:1-33. [PMID: 35643193 DOI: 10.1016/j.actbio.2022.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/01/2022]
Abstract
There is an intense interest in developing materials for safe and effective delivery of polynucleotides using non-viral vectors. Mineralization of organic templates has long been used to produce complex materials with outstanding biocompatibility. However, a lack of control over mineral growth has limited the applicability of mineralized materials to a few in vitro applications. With better control over mineral growth and surface functionalization, mineralized vectors have advanced significantly in recent years. Here, we review the recent progress in chemical synthesis, physicochemical properties, and applications of mineralized materials in gene therapy, focusing on structure-function relationships. We contrast the classical understanding of the mineralization mechanism with recent ideas of mineralization. A brief introduction to gene delivery is summarized, followed by a detailed survey of current mineralized vectors. The vectors derived from calcium phosphate are articulated and compared to other minerals with unique features. Advanced mineral vectors derived from templated mineralization and specialty coatings are critically analyzed. Mineral systems beyond the co-precipitation are explored as more complex multicomponent systems. Finally, we conclude with a perspective on the future of mineralized vectors by carefully demarcating the boundaries of our knowledge and highlighting ambiguous areas in mineralized vectors. STATEMENT OF SIGNIFICANCE: Therapy by gene-based medicines is increasingly utilized to cure diseases that are not alleviated by conventional drug therapy. Gene medicines, however, rely on macromolecular nucleic acids that are too large and too hydrophilic for cellular uptake. Without tailored materials, they are not functional for therapy. One emerging class of nucleic acid delivery system is mineral-based materials. The fact that they can undergo controlled dissolution with minimal footprint in biological systems are making them attractive for clinical use, where safety is utmost importance. In this submission, we will review the emerging synthesis technology and the range of new generation minerals for use in gene medicines.
Collapse
|
3
|
A Dick T, Uludağ H. Mineralized polyplexes for gene delivery: Improvement of transfection efficiency as a consequence of calcium incubation and not mineralization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112419. [PMID: 34579928 DOI: 10.1016/j.msec.2021.112419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022]
Abstract
Gene therapy is an emerging field in which nucleic acids are used to control protein expression. The necessity of delivering nucleic acids to specific cell types and intracellular sites demands the use of highly specialized gene carriers. As a carrier modification technique, mineralization has been successfully used to modify viral and non-viral carriers, providing new properties that ultimately aim to increase the transfection efficiency. However, for the specific case of polyplexes used in gene therapy, recent literature shows that interaction with calcium, a fundamental step of mineralization, might be effective to increase transfection efficiency, leaving an ambiguity about of the role of mineralization for this type of gene carriers. To answer this question and to reveal the properties responsible for increasing transfection efficiency, we mineralized poly(aspartic acid) coated polyplexes at various CaCl2 and Na3PO4 concentrations, and evaluated the resultant carriers for physicochemical and morphological characteristics, as well as transfection and delivery efficiency with MC3T3-E1 mouse osteoblastic cells. We found that both mineralization and calcium incubation positively affected the transfection efficiency and uptake of polyplexes in MC3T3-E1 cells. However, this effect originated from the properties achieved by polyplexes after the calcium incubation step that are maintained after mineralization, including particle size increase, improved pDNA binding, and adjustment of zeta potential. Considering that mineralization can be a longer process than calcium incubation, we find that calcium incubation might be sufficient and preferred if improved transfection efficiency in vitro is the only effect desired.
Collapse
Affiliation(s)
- Teo A Dick
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada.
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Oyane A, Araki H, Nakamura M, Shimizu Y, Shubhra QT, Ito A, Tsurushima H. Controlled superficial assembly of DNA–amorphous calcium phosphate nanocomposite spheres for surface-mediated gene delivery. Colloids Surf B Biointerfaces 2016; 141:519-527. [DOI: 10.1016/j.colsurfb.2016.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
|
5
|
Yazaki Y, Oyane A, Sogo Y, Ito A, Yamazaki A, Tsurushima H. Area-specific cell stimulation via surface-mediated gene transfer using apatite-based composite layers. Int J Mol Sci 2015; 16:8294-309. [PMID: 25874757 PMCID: PMC4425081 DOI: 10.3390/ijms16048294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 11/16/2022] Open
Abstract
Surface-mediated gene transfer systems using biocompatible calcium phosphate (CaP)-based composite layers have attracted attention as a tool for controlling cell behaviors. In the present study we aimed to demonstrate the potential of CaP-based composite layers to mediate area-specific dual gene transfer and to stimulate cells on an area-by-area basis in the same well. For this purpose we prepared two pairs of DNA–fibronectin–apatite composite (DF-Ap) layers using a pair of reporter genes and pair of differentiation factor genes. The results of the area-specific dual gene transfer successfully demonstrated that the cells cultured on a pair of DF-Ap layers that were adjacently placed in the same well showed specific gene expression patterns depending on the gene that was immobilized in theunderlying layer. Moreover, preliminary real-time PCR results indicated that multipotential C3H10T1/2 cells may have a potential to change into different types of cells depending on the differentiation factor gene that was immobilized in the underlying layer, even in the same well. Because DF-Ap layers have a potential to mediate area-specific cell stimulation on their surfaces, they could be useful in tissue engineering applications.
Collapse
Affiliation(s)
- Yushin Yazaki
- Department of Resources and Environmental Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan.
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan.
| | - Yu Sogo
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Atsuo Ito
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Atsushi Yamazaki
- Department of Resources and Environmental Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.
| | - Hideo Tsurushima
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan.
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
6
|
Improved gene transfer efficiency of a DNA-lipid-apatite composite layer by controlling the layer molecular composition. Colloids Surf B Biointerfaces 2014; 122:465-471. [DOI: 10.1016/j.colsurfb.2014.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/30/2014] [Accepted: 07/01/2014] [Indexed: 11/21/2022]
|
7
|
Yazaki Y, Oyane A, Tsurushima H, Araki H, Sogo Y, Ito A, Yamazaki A. Coprecipitation of DNA-lipid complexes with apatite and comparison with superficial adsorption for gene transfer applications. J Biomater Appl 2014; 28:937-45. [PMID: 24381202 DOI: 10.1177/0885328213486706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apatite can mediate gene transfer into cells by serving as a safe and biocompatible immobilization matrix for DNA and transfection reagents. Recently, an apatite layer that immobilized DNA-lipid complexes was prepared by a coprecipitation process in a supersaturated calcium phosphate solution. This composite layer (DNA-lipid-apatite layer) showed a higher gene transfer capability than an apatite layer with superficially adsorbed DNA-lipid complexes (DNA-lipid-adsorbed apatite layer). In this study, the DNA-lipid-apatite layer and the DNA-lipid-adsorbed apatite layer were compared for their physicochemical properties and gene transfer capabilities. The higher gene transfer capability of the DNA-lipid-apatite layer compared with that of the DNA-lipid-adsorbed apatite layer was reconfirmed by a luciferase assay using epithelial-like CHO-K1 cells. Physicochemical structure analyses showed that the DNA-lipid-apatite layer possessed a larger capacity for DNA-lipid complexes than the DNA-lipid-adsorbed apatite layer. The DNA-lipid-apatite layer released DNA-lipid complexes in a slow and sustained manner, whereas the DNA-lipid-adsorbed apatite layer released them in short bursts. Consequently, the release of DNA-lipid complexes from the DNA-lipid-apatite layer was larger in amount and longer in duration than release from the DNA-lipid-adsorbed apatite layer. This difference in release profiles may be responsible for the higher gene transfer capability of the DNA-lipid-apatite layer compared with that of the DNA-lipid-adsorbed apatite layer. The coprecipitation process and the resulting DNA-lipid-apatite layer have many applications in tissue engineering.
Collapse
Affiliation(s)
- Yushin Yazaki
- 1Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Wang X, Ito A, Li X, Sogo Y, Hirose M, Oyane A, Tsurushima H. DNA-lipid-apatite composite layers enhance gene expression of mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:512-8. [DOI: 10.1016/j.msec.2012.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/27/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
|
9
|
Yazaki Y, Oyane A, Araki H, Sogo Y, Ito A, Yamazaki A, Tsurushima H. Fabrication of DNA-antibody-apatite composite layers for cell-targeted gene transfer. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:064204. [PMID: 27877531 PMCID: PMC5099764 DOI: 10.1088/1468-6996/13/6/064204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/20/2012] [Indexed: 06/04/2023]
Abstract
Surface-mediated gene transfer systems using apatite (Ap)-based composite layers have received increased attention in tissue engineering applications owing to their safety, biocompatibility and relatively high efficiency. In this study, DNA-antibody-apatite composite layers (DA-Ap layers), in which DNA and antibody molecules are immobilized within a matrix of apatite nanocrystals, were fabricated using a biomimetic coating process. They were then assayed for their gene transfer capability for application in a specific cell-targeted gene transfer. A DA-Ap layer that was fabricated with an anti-CD49f antibody showed a higher gene transfer capability to the CD49f-positive CHO-K1 cells than a DNA-apatite composite layer (D-Ap layer). The antibody facilitated the gene transfer capability of the DA-Ap layer only to the specific cells that were expressing corresponding antigens. When the DA-Ap layer was fabricated with an anti-N-cadherin antibody, a higher gene transfer capability compared with the D-Ap layer was found in the N-cadherin-positive P19CL6 cells, but not in the N-cadherin-negative UV♀2 cells or in the P19CL6 cells that were pre-blocked with anti-N-cadherin. Therefore, the antigen-antibody binding that takes place at the cell-layer interface should be responsible for the higher gene transfer capability of the DA-Ap than D-Ap layer. These results suggest that the DA-Ap layer works as a mediator in a specific cell-targeted gene transfer system.
Collapse
Affiliation(s)
- Yushin Yazaki
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo, 169-8555, Japan
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8562, Japan
| | - Ayako Oyane
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8562, Japan
| | - Hiroko Araki
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8562, Japan
| | - Yu Sogo
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Atsuo Ito
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Atsushi Yamazaki
- Department of Resources and Environmental Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Hideo Tsurushima
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8562, Japan
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
10
|
Abstract
A surface-mediated gene transfer system using DNA-calcium phosphate (CaP) composite layers (D-CaP layers) would be useful in tissue engineeing. In previous studies, D-CaP layers were fabricated in supersaturated CaP solutions prepared using chemical reagents. In this study, a so-called RKM solution prepared using clinically approved infusion fluids was employed as a supersaturated CaP solution. A D-CaP layer consisting of submicron spherical particles was successfully fabricated on a polystyrene substrate by immersing the substrate in the RKM solution for 24 h. When the immersion period was prolonged from 24 to 72 h, amount of CaP and DNA on the substrate increased. However, the gene transfer capability of the D-CaP layer for the CHO-K1 cells was kept unchanged irrespective of the immersion period. In the RKM solution process, immersion period of 24 h was found to be long enough for gene transfer application of the D-CaP layer. More importantly, the D-CaP layer fabricated by the RKM solution process exhibited a significantly higher gene transfer capability than our previous D-CaP layer fabricated in the conventional CaP solution with the same DNA concentration. The RKM solution process for the fabrication of D-CaP layers was found to be advantageous to the previous process in terms of not only safety but the layers gene transfer capability.
Collapse
|