1
|
Dousti M, Golmohamadpour A, Hami Z, Jamalpoor Z. Ca-AlN MOFs-loaded chitosan/gelatin scaffolds; a dual-delivery system for bone tissue engineering applications. NANOTECHNOLOGY 2024; 35:145101. [PMID: 37992401 DOI: 10.1088/1361-6528/ad0ef4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Creating a scaffold for bone tissue engineering that is bioactive and capable of acting as a local-dual delivery system, releasing bioactive molecules and regulating the bone remodeling process to achieve balanced bone resorption and formation, is a significant challenge. The objective of this research is to create a composite scaffold using chitosan/gelatin (CHS/Gel) and the calcium (Ca)-alendronate (ALN) metal-organic frameworks (MOFs). The scaffold will act as a dual-delivery system, releasing Ca ions and ALN to regulate bone formation. Ca-ALN MOF nanoparticles (NPs) were prepared in mild conditions and studied by FTIR, XRD, FESEM, and TGA. Ca-ALN NPs-loaded CHS/Gel scaffolds were opportunely fabricated through freeze-drying approach. Physicochemical features of the scaffolds after incorporating NPs equated by CHS/Gel scaffold changed, therefore, the attendance of NPs caused a decreasing porosity, decreased swelling, and low rate of degradation. The release profile results showed that the NPs-loaded CHS/Gel scaffolds were able to simultaneously release ALN and Ca ions due to the decomposition of NPs. Additionally, the loading of NPs in the CHS/Gel scaffold led to an increment in alkaline phosphatase (ALP) activity and the quantity of deposited Ca along with osteogenesis gene markers. These findings suggest that the NPs-loaded CHS/Gel scaffold has the potential to enhance the differentiation of human adipose tissue-derived mesenchymal stem cells, making it a promising approach for bone repair.
Collapse
Affiliation(s)
- Mahdi Dousti
- Trauma and Surgery Research Center, Aja University of Medical Sciences, Tehran, Iran
| | | | - Zahra Hami
- Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Zahra Jamalpoor
- Trauma and Surgery Research Center, Aja University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Miranda RM, Fernandes JL, Santos MDS, Jácome-Santos H, Milagres RMC, Pretti H, Abreu LG, Macari S. Influence of risedronate on orthodontic tooth movement in rodents: a systematic review and case report. Dental Press J Orthod 2024; 28:e2322280. [PMID: 38198389 PMCID: PMC10773446 DOI: 10.1590/2177-6709.28.6.e2322280.oar] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/30/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Bisphosphonates have an inhibitory impact on osteoclastic activity, reducing bone resorption. However, the influence of risedronate on tooth movement is not well-defined. OBJECTIVE This systematic review assessed the effect of risedronate intake on orthodontic tooth movement. A case report was also provided. METHODS Two independent reviewers searched six databases (PubMed, Web of Science, Ovid, Lilacs, Scopus, and Open Grey). The searches were carried out in April/2020, and an update was set in place in June/2023. Therefore, the searches considered a timeline from the databases' inception date until June/2023, with no publication date and/or language restrictions. The clinical question focused on evaluating the orthodontic tooth movement and relapse movement (Outcome) in animals (Population) exposed to risedronate (Exposure), compared to control groups (Comparison). The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines were applied, and the protocol was registered in PROSPERO (CRD42020168581). The risk of bias was determined using the Systematic Review Centre for Laboratory Animal Experimentation protocol (SYRCLE). RESULTS Two studies in rats and one in guinea pigs were included in the systematic review. The studies reported a decrease in orthodontic tooth movement, a reduction in the relapse movement, and a reduced number of positive tartrate-resistant acid phosphatase (TRAP) cells, with a significantly reduced number of bone gaps after the administration of risedronate in rats. A case report illustrated the effects of risedronate administration in one patient. CONCLUSION Based on the systematic review, risedronate seems to impair orthodontic tooth movement and relapse due to a decrease in bone resorption cells.
Collapse
Affiliation(s)
- Roberta Magalhães Miranda
- Universidade Federal de Minas Gerais, Faculdade de Odontologia, Departamento de Odontologia Restauradora (Belo Horizonte/MG, Brazil)
| | - Juliana Lourdes Fernandes
- Universidade Federal de Minas Gerais, Faculdade de Odontologia, Departamento de Odontologia Restauradora (Belo Horizonte/MG, Brazil)
| | - Mariana de Souza Santos
- Universidade Federal de Minas Gerais, Faculdade de Odontologia, Departamento de Odontologia Restauradora (Belo Horizonte/MG, Brazil)
| | - Humberto Jácome-Santos
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Fisiologia e Biofísica (Belo Horizonte/MG, Brazil)
| | - Roselaine Moreira Coelho Milagres
- Universidade Federal de Minas Gerais, Faculdade de Odontologia, Departamento de Patologia e Cirurgia Odontológica (Belo Horizonte/MG, Brazil)
| | - Henrique Pretti
- Universidade Federal de Minas Gerais, Faculdade de Odontologia, Departamento de Odontologia Restauradora (Belo Horizonte/MG, Brazil)
| | - Lucas Guimarães Abreu
- Universidade Federal de Minas Gerais, Faculdade de Odontologia, Departamento de Saúde Bucal da Criança e do Adolescente (Belo Horizonte/MG, Brazil)
| | - Soraia Macari
- Universidade Federal de Minas Gerais, Faculdade de Odontologia, Departamento de Odontologia Restauradora (Belo Horizonte/MG, Brazil)
| |
Collapse
|
3
|
Poorirani S, Taheri SL, Mostafavi SA. Scaffolds: a biomaterial engineering in targeted drug delivery for osteoporosis. Osteoporos Int 2023; 34:255-267. [PMID: 36241849 DOI: 10.1007/s00198-022-06543-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/24/2022] [Indexed: 01/24/2023]
Abstract
Osteoporosis is an increasingly common condition that causes low bone density, porous bone, and increased fracture risk. Treatments for osteoporosis are divided into two categories: (a) antiresorptive and (b) anabolic. To decrease side effects of drug and dosage level variations caused by several consecutive administrations, various drug delivery systems have been proposed. Among them, scaffolds are one of the drug delivery systems that led to drug impart with high loading and suitable efficiency to specific sites which retain active agents at acceptable therapeutic levels. The purpose of this review was to explain the role of scaffolds in targeted drug delivery to bone tissue for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Safoora Poorirani
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, 8174673461, Iran
| | - Sayed Latif Taheri
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, 8174673461, Iran
| | - Sayed Abolfazl Mostafavi
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, 8174673461, Iran.
| |
Collapse
|
4
|
Bharathi R, Ganesh SS, Harini G, Vatsala K, Anushikaa R, Aravind S, Abinaya S, Selvamurugan N. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int J Biol Macromol 2022; 222:132-153. [PMID: 36108752 DOI: 10.1016/j.ijbiomac.2022.09.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
The bone tissue engineering approach for treating large bone defects becomes necessary when the tissue damage surpasses the threshold of the inherent regenerative ability of the human body. A myriad of natural biodegradable polymers and scaffold fabrication techniques have emerged in the last decade. Chitosan (CS) is especially attractive as a bone scaffold material to support cell attachment and proliferation and mineralization of the bone matrix. The primary amino groups in CS are responsible for properties such as controlled drug release, mucoadhesion, in situ gelation, and transfection. CS-based smart drug delivery scaffolds that respond to environmental stimuli have been reported to have a localized sustained delivery of drugs in the large bone defect area. This review outlines the recent advances in the fabrication of CS-based scaffolds as a pharmaceutical carrier to deliver drugs such as antibiotics, growth factors, nucleic acids, and phenolic compounds for bone tissue regeneration.
Collapse
Affiliation(s)
- R Bharathi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Shree Ganesh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - G Harini
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kumari Vatsala
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - R Anushikaa
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Aravind
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Abinaya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
5
|
Iles B, Ribeiro de Sá Guimarães Nolêto I, Dourado FF, de Oliveira Silva Ribeiro F, de Araújo AR, de Oliveira TM, Souza JMT, Barros AB, Sousa GC, de Jesus Oliveira AC, da Silva Martins C, de Oliveira Viana Veras M, de Carvalho Leitão RF, de Souza de Almeida Leite JR, da Silva DA, Medeiros JVR. Alendronate sodium-polymeric nanoparticles display low toxicity in gastric mucosal of rats and Ofcol II cells. NANOIMPACT 2021; 24:100355. [PMID: 35559814 DOI: 10.1016/j.impact.2021.100355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/15/2023]
Abstract
The use of bisphosphonates constitutes the gold-standard therapy for the control and treatment of bone diseases. However, its long-term use may lead to gastric problems, which limits the treatment. Thus, this study aimed to formulate a nanostructured system with biodegradable polymers for the controlled release of alendronate sodium. The nanoparticles were characterized, and its gastric toxicity was investigated in rats. The synthesis process proved to be effective for encapsulating alendronate sodium, exhibiting nanoparticles with an average size of 51.02 nm and 98.5% of alendronate sodium incorporation. The release tests demonstrated a controlled release of the drug in 420 min, while the morphological analyzes showed spherical shapes and no apparent roughness. The biological tests demonstrated that the alendronate sodium nanoformulation reversed the gastric lesions, maintaining the normal levels of malondialdehyde and myeloperoxidase. Also, the encapsulated alendronate sodium showed no toxicity in murine osteoblastic cells, even at high concentrations.
Collapse
Affiliation(s)
- Bruno Iles
- Laboratory of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Isabela Ribeiro de Sá Guimarães Nolêto
- Laboratory of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Flaviane França Dourado
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Fábio de Oliveira Silva Ribeiro
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Alyne Rodrigues de Araújo
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Taiane Maria de Oliveira
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Jessica Maria Teles Souza
- Parnaíba Delta Cell Culture Laboratory (LCC-Delta), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Ayslan Batista Barros
- Parnaíba Delta Cell Culture Laboratory (LCC-Delta), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Gabrielle Costa Sousa
- Laboratory of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Antônia Carla de Jesus Oliveira
- Quality Control Center for Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - University City, Recife, PE 50670-901, Brazil
| | - Conceição da Silva Martins
- Nucleus of Studies in Microscopy and Image Processing - NEMPI, Federal University of Ceará, Rua Alexandre Baraúna, 994 - Rodolfo Teófilo, Fortaleza, CE 60430-160, Brazil
| | - Mariana de Oliveira Viana Veras
- Nucleus of Studies in Microscopy and Image Processing - NEMPI, Federal University of Ceará, Rua Alexandre Baraúna, 994 - Rodolfo Teófilo, Fortaleza, CE 60430-160, Brazil
| | - Renata Ferreira de Carvalho Leitão
- Nucleus of Studies in Microscopy and Image Processing - NEMPI, Federal University of Ceará, Rua Alexandre Baraúna, 994 - Rodolfo Teófilo, Fortaleza, CE 60430-160, Brazil
| | - José Roberto de Souza de Almeida Leite
- Center for Research in Applied Morphology and Immunology - NuPMIA, University of Brasilia, Campus Darcy Ribeiro - Asa Norte-Brasília-DF, CEP 70.910-900 Brasilia, Brazil
| | - Durcilene Alves da Silva
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Jand Venes Rolim Medeiros
- Laboratory of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil.
| |
Collapse
|
6
|
Choi S, Jo HS, Song H, Kim HJ, Oh JK, Cho JW, Park K, Kim SE. Multifunctional Tannic Acid-Alendronate Nanocomplexes with Antioxidant, Anti-Inflammatory, and Osteogenic Potency. NANOMATERIALS 2021; 11:nano11071812. [PMID: 34361198 PMCID: PMC8308329 DOI: 10.3390/nano11071812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022]
Abstract
In the current study, we fabricated tannic acid-alendronate (TA-ALN) nanocomplexes (NPXs) via self-assembly. These TA-ALNs were characterized by dynamic light scattering, zeta potential, transmission electron microscopy, and FT-IR spectroscopy. The TA-ALNs were evaluated for antioxidant, anti-inflammatory, and osteogenesis-accelerating abilities in osteoblast-like cells (MC3T3-E1 cells). All TA-ALNs displayed nano-sized beads that were circular in form. Treatment with TA-ALN (1:0.1) efficiently removed reactive oxygen species in cells and protected osteoblast-like cells from toxic hydrogen peroxide conditions. Moreover, TA-ALN (1:0.1) could markedly decrease the mRNA levels of pro-inflammatory mediators in lipopolysaccharide-stimulated cells. Furthermore, cells treated with TA-ALN (1:1) exhibited not only significantly greater alkaline phosphatase activity and calcium collection, but also outstandingly higher mRNA levels of osteogenesis-related elements such as collagen type I and osteocalcin. These outcomes indicate that the prepared TA-ALNs are excellent for antioxidant, anti-inflammatory, and osteogenic acceleration. Accordingly, TA-ALN can be used latently for bone renovation and regeneration in people with bone fractures, diseases, or disorders.
Collapse
Affiliation(s)
- Somang Choi
- Department of Orthopedic Surgery and Nano-Based Disease Control Institute, Korea University Guro Hospital, #148, Gurodong-ro, Guro-gu, Seoul 08308, Korea; (S.C.); (H.-S.J.); (H.-J.K.); (J.-K.O.)
| | - Han-Saem Jo
- Department of Orthopedic Surgery and Nano-Based Disease Control Institute, Korea University Guro Hospital, #148, Gurodong-ro, Guro-gu, Seoul 08308, Korea; (S.C.); (H.-S.J.); (H.-J.K.); (J.-K.O.)
| | - Heegyeong Song
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea;
| | - Hak-Jun Kim
- Department of Orthopedic Surgery and Nano-Based Disease Control Institute, Korea University Guro Hospital, #148, Gurodong-ro, Guro-gu, Seoul 08308, Korea; (S.C.); (H.-S.J.); (H.-J.K.); (J.-K.O.)
| | - Jong-Keon Oh
- Department of Orthopedic Surgery and Nano-Based Disease Control Institute, Korea University Guro Hospital, #148, Gurodong-ro, Guro-gu, Seoul 08308, Korea; (S.C.); (H.-S.J.); (H.-J.K.); (J.-K.O.)
| | - Jae-Woo Cho
- Department of Orthopedic Surgery and Nano-Based Disease Control Institute, Korea University Guro Hospital, #148, Gurodong-ro, Guro-gu, Seoul 08308, Korea; (S.C.); (H.-S.J.); (H.-J.K.); (J.-K.O.)
- Correspondence: (J.-W.C.); (K.P.); (S.-E.K.); Tel.: +82-2-2626-1869 (J.-W.C.); +82-31-670-3357 (K.P.); +82-2-6738-4514 (S.-E.K.)
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea;
- Correspondence: (J.-W.C.); (K.P.); (S.-E.K.); Tel.: +82-2-2626-1869 (J.-W.C.); +82-31-670-3357 (K.P.); +82-2-6738-4514 (S.-E.K.)
| | - Sung-Eun Kim
- Department of Orthopedic Surgery and Nano-Based Disease Control Institute, Korea University Guro Hospital, #148, Gurodong-ro, Guro-gu, Seoul 08308, Korea; (S.C.); (H.-S.J.); (H.-J.K.); (J.-K.O.)
- Correspondence: (J.-W.C.); (K.P.); (S.-E.K.); Tel.: +82-2-2626-1869 (J.-W.C.); +82-31-670-3357 (K.P.); +82-2-6738-4514 (S.-E.K.)
| |
Collapse
|
7
|
Takeshita S, Zhao S, Malfait WJ, Koebel MM. Chemie der Chitosan‐Aerogele: Lenkung der dreidimensionalen Poren für maßgeschneiderte Anwendungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202003053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Satoru Takeshita
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
- Research Institute for Chemical Process Technology National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi 3058565 Tsukuba Japan
| | - Shanyu Zhao
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Wim J. Malfait
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Matthias M. Koebel
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| |
Collapse
|
8
|
Lee D, Wufuer M, Kim I, Choi TH, Kim BJ, Jung HG, Jeon B, Lee G, Jeon OH, Chang H, Yoon DS. Sequential dual-drug delivery of BMP-2 and alendronate from hydroxyapatite-collagen scaffolds for enhanced bone regeneration. Sci Rep 2021; 11:746. [PMID: 33436904 PMCID: PMC7804460 DOI: 10.1038/s41598-020-80608-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
The clinical use of bioactive molecules in bone regeneration has been known to have side effects, which result from uncontrolled and supraphysiological doses. In this study, we demonstrated the synergistic effect of two bioactive molecules, bone morphogenic protein-2 (BMP-2) and alendronate (ALN), by releasing them in a sequential manner. Collagen-hydroxyapatite composite scaffolds functionalized using BMP-2 are loaded with biodegradable microspheres where ALN is encapsulated. The results indicate an initial release of BMP-2 for a few days, followed by the sequential release of ALN after two weeks. The composite scaffolds significantly increase osteogenic activity owing to the synergistic effect of BMP-2 and ALN. Enhanced bone regeneration was identified at eight weeks post-implantation in the rat 8-mm critical-sized defect. Our findings suggest that the sequential delivery of BMP-2 and ALN from the scaffolds results in a synergistic effect on bone regeneration, which is unprecedented. Therefore, such a system exhibits potential for the application of cell-free tissue engineering.
Collapse
Affiliation(s)
- Dongtak Lee
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Maierdanjiang Wufuer
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Insu Kim
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Tae Hyun Choi
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Byung Jun Kim
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hyo Gi Jung
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea.,Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
| | - Byoungjun Jeon
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, 03080, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Ok Hee Jeon
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Hak Chang
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea. .,Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
9
|
Baniahmad F, Yousefi S, Rabiee M, Sara Shafiei S, Faghihi S. Alendronate Sodium Intercalation in Layered Double Hydroxide/Poly (ε-caprolactone): Application in Osteoporosis Treatment. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2490. [PMID: 34179186 PMCID: PMC8217540 DOI: 10.30498/ijb.2021.2490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background: Osteoporosis is a bone disease alters the amount and variety of proteins in bone tissue and increases the potential of bone fracture.
Antiresorptive therapy is one of the most popular treatment methods for osteoporosis. To reduce side effects and enhance the bioavailability of drug agents,
the controlled delivery of drug is commonly utilized. Objectives: We investigated the controlled release of Alendronate in different composites of layered double hydroxide (LDH) using poly (ε-caprolactone) (PCL) as a matrix. Materials and Methods: We prepared different microsphere composites of ALD intercalated in various amounts of LDH, using PCL as a matrix.
The controlled release of ALD from these composites is subsequently investigated. Samples are characterized and in vitro cell cytotoxicity, attachment,
osteogenic activity including alkaline phosphatase activity and mineralization are examined using MG-63 human osteosarcoma cells. Results: The results showed that the release of ALD is more desirable and controlled in the samples having a higher amount of LDH incorporated into the
PCL matrix. MG63 cells show a significant increase in viability, attachment, and mineralization while alkaline phosphatase activity remains almost at a constant level after 3 weeks. Conclusions: Overall, the findings showed that by incorporation of 15 wt% of LDH, the composite microsphere is capable of holding the antiresorptive drug longer and release
it in a more controlled manner. This is an advantageous and promising characteristic for a carrier that could be used as a potential candidate for osteoporosis treatment.
Collapse
Affiliation(s)
- Faranak Baniahmad
- Department of Stem cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.,Biomaterials Center of Excellence, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Soroor Yousefi
- Department of Stem cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Center of Excellence, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Seyedeh Sara Shafiei
- Department of Stem cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shahab Faghihi
- Department of Stem cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
10
|
Jarrar H, Çetİn Altindal D, GÜmÜŞderelİoĞlu M. The inhibitory effect of melatonin on osteoclastogenesis of RAW 264.7 cells in low concentrations of RANKL and MCSF. ACTA ACUST UNITED AC 2020; 44:427-436. [PMID: 33402869 PMCID: PMC7759193 DOI: 10.3906/biy-2007-85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
Abstract
RAW 264.7 cells are one of the most recommended cell lines for investigating the activity and differentiation of osteoclasts. These cells differentiate into osteoclasts in the presence of two critical components: receptor activator of nuclear factor kappa B ligand (RANKL) and macrophage colony stimulating factor (MCSF). Melatonin (MEL) hormone has recently become one of the small molecules used in the field of bone regeneration and bone disease treatment, as it has the ability to inhibit the differentiation of osteoclasts directly by suppression of the NF-κB signaling pathway. The main aim of the current study is to determine sufficient RANKL/MCSF concentrations for differentiation of the cells to osteoclasts and to describe the repressive effect of MEL on the osteoclastogenesis of these cells. In this regard, it was found that 10 ng/mL of RANKL- and MCSF-containing medium is suitable for inducing osteoclastogenesis of the cells. In addition, melatonin at doses in the range of 100-1000 µM does not have a cytotoxic effect. Subsequently, results of tartrate resistant acid phosphatase (TRAP) activity, TRAP staining, and relative expressions of cathepsin K, nuclear factor of activated T cells one (NFATC1), and TRAP genes showed a suppressive effect of MEL -especially 800 µM- on RANKL-induced osteoclastogenesis of these cells.
Collapse
Affiliation(s)
- Hala Jarrar
- Bioengineering Division, Department of Chemical Engineering, Faculty of Engineering, Hacettepe University, Ankara Turkey
| | - Damla Çetİn Altindal
- Bioengineering Division, Department of Chemical Engineering, Faculty of Engineering, Hacettepe University, Ankara Turkey
| | - Menemşe GÜmÜŞderelİoĞlu
- Bioengineering Division, Department of Chemical Engineering, Faculty of Engineering, Hacettepe University, Ankara Turkey
| |
Collapse
|
11
|
Takeshita S, Zhao S, Malfait WJ, Koebel MM. Chemistry of Chitosan Aerogels: Three‐Dimensional Pore Control for Tailored Applications. Angew Chem Int Ed Engl 2020; 60:9828-9851. [DOI: 10.1002/anie.202003053] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/06/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Satoru Takeshita
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
- Research Institute for Chemical Process Technology National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi 3058565 Tsukuba Japan
| | - Shanyu Zhao
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Wim J. Malfait
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Matthias M. Koebel
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| |
Collapse
|
12
|
Moradikhah F, Doosti-Telgerd M, Shabani I, Soheili S, Dolatyar B, Seyedjafari E. Microfluidic fabrication of alendronate-loaded chitosan nanoparticles for enhanced osteogenic differentiation of stem cells. Life Sci 2020; 254:117768. [PMID: 32407840 DOI: 10.1016/j.lfs.2020.117768] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 01/05/2023]
Abstract
AIMS In this study, we used a cross-junction microfluidic device for preparation of alendronate-loaded chitosan nanoparticles with desired characteristics to introduce a suitable element for bone tissue engineering scaffolds. MAIN METHODS By controlling the reaction condition in microfluidic device, six types of alendronate-loaded chitosan nanoparticles were fabricated which had different physical properties. Hydrodynamic diameter of synthetized particles was evaluated by dynamic light scattering (102 to 215 nm). Nanoparticle morphology was determined by SEM and AFM images. The osteogenic effects of prepared selected nanoparticles on human adipose stem cells (hA-MSCs) were evaluated by assessment of alkaline phosphatase (ALP) activity, calcium deposition, ALP and osteopontin gene expression. KEY FINDINGS The highest loading efficiency percentage (%LE) was %32.42 ± 2.02. Based on MTT assessment, two samples which had no significant cytotoxicity were chosen for further studies (particle sizes and %LE were 142 ± 6.1 nm, 198 ± 16.56 nm, %16.76 ± 3.91 and %32.42 ± 2.02, respectively). In vitro release behavior of nanoparticles displayed pH responsive characteristics. Significant faster release was seen in acidic pH = 5.8 than neutral pH = 7.4. The selected nanoparticles demonstrated higher ALP activity at 14 days in comparison to selected blank sample and osteogenic differentiation media (ODM) and a downregulation at 21 days in comparison to 14 days. Calcium content assay at 21 days displayed significant differences between alendronate-loaded nanoparticles and ODM. ALP and osteopontin mRNA expression was significantly higher than the cells cultured in ODM at 14 and 21 days. SIGNIFICANCE We concluded that our prepared nanoparticles significantly enhanced osteogenic differentiation of hA-MSCs and can be a suitable compartment of bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Farzad Moradikhah
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mehdi Doosti-Telgerd
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iman Shabani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Shima Soheili
- Department of Polymer and Color Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Banafsheh Dolatyar
- Department of Cell and Developmental Biology, School of Biological Sciences, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Wehner C, Lettner S, Moritz A, Andrukhov O, Rausch-Fan X. Effect of bisphosphonate treatment of titanium surfaces on alkaline phosphatase activity in osteoblasts: a systematic review and meta-analysis. BMC Oral Health 2020; 20:125. [PMID: 32334598 PMCID: PMC7183598 DOI: 10.1186/s12903-020-01089-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/26/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bisphosphonate coating of dental implants is a promising tool for surface modification aiming to improve the osseointegration process and clinical outcome. The biological effects of bisphosphonates are thought to be mainly associated with osteoclasts inhibition, whereas their effects on osteoblast function are unclear. A potential of bisphosphonate coated surfaces to stimulate osteoblast differentiation was investigated by several in vitro studies with contradictory results. The purpose of this systematic review and meta-analysis was to evaluate the effect of bisphosphonate coated implant surfaces on alkaline phosphatase activity in osteoblasts. METHODS In vitro studies that assessed alkaline phosphatase activity in osteoblasts following cell culture on bisphosphonate coated titanium surfaces were searched in electronic databases PubMed/MEDLINE, Scopus and ISI Web of Science. Animal studies and clinical trials were excluded. The literature search was restricted to articles written in English and published up to August 2019. Publication bias was assessed by the construction of funnel plots. RESULTS Eleven studies met the inclusion criteria. Meta-analysis showed that coating of titanium surfaces with bisphosphonates increases alkaline phosphatase activity in osteoblasts after 3 days (n = 1), 7 (n = 7), 14 (n = 6) and 21 (n = 3) days. (7 days beta coefficient = 1.363, p-value = 0.001; 14 days beta coefficient = 1.325, p-value < 0.001; 21 days beta coefficient = 1.152, p-value = 0.159). CONCLUSIONS The meta-analysis suggests that bisphosphonate coatings of titanium implant surfaces may have beneficial effects on osteogenic behaviour of osteoblasts grown on titanium surfaces in vitro. Further studies are required to assess to which extent bisphosphonates coating might improve osseointegration in clinical situations.
Collapse
Affiliation(s)
- Christian Wehner
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, A-1090, Vienna, Austria
| | - Stefan Lettner
- Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Moritz
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, A-1090, Vienna, Austria
| | - Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, A-1090, Vienna, Austria.
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, A-1090, Vienna, Austria
| |
Collapse
|
14
|
Cho TH, Kim IS, Lee B, Park SN, Ko JH, Hwang SJ. Early and Marked Enhancement of New Bone Quality by Alendronate-Loaded Collagen Sponge Combined with Bone Morphogenetic Protein-2 at High Dose: A Long-Term Study in Calvarial Defects in a Rat Model. Tissue Eng Part A 2017; 23:1343-1360. [DOI: 10.1089/ten.tea.2016.0557] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tae Hyung Cho
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Clinical Dental Research Institute, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - In Sook Kim
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Beomseok Lee
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Si-Nae Park
- Regenerative Medicine Research Center, Dalim Tissen Co., Ltd., Seoul, Republic of Korea
| | - Jae-Hyung Ko
- Regenerative Medicine Research Center, Dalim Tissen Co., Ltd., Seoul, Republic of Korea
| | - Soon Jung Hwang
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Clinical Dental Research Institute, Seoul National University Dental Hospital, Seoul, Republic of Korea
- Department of Oral and Maxillofacial Surgery, School of Dentistry, BK21 Plus Program, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Monteiro N, Yelick PC. Advances and perspectives in tooth tissue engineering. J Tissue Eng Regen Med 2017; 11:2443-2461. [PMID: 27151766 PMCID: PMC6625321 DOI: 10.1002/term.2134] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022]
Abstract
Bio-engineered teeth that can grow and remodel in a manner similar to that of natural teeth have the potential to serve as permanent replacements to the currently used prosthetic teeth, such as dental implants. A major challenge in designing functional bio-engineered teeth is to mimic both the structural and anisotropic mechanical characteristics of the native tooth. Therefore, the field of dental and whole tooth regeneration has advanced towards the molecular and nanoscale design of bio-active, biomimetic systems, using biomaterials, drug delivery systems and stem cells. The focus of this review is to discuss recent advances in tooth tissue engineering, using biomimetic scaffolds that provide proper architectural cues, exhibit the capacity to support dental stem cell proliferation and differentiation and sequester and release bio-active agents, such as growth factors and nucleic acids, in a spatiotemporal controlled manner. Although many in vitro and in vivo studies on tooth regeneration appear promising, before tooth tissue engineering becomes a reality for humans, additional research is needed to perfect methods that use adult human dental stem cells, as opposed to embryonic dental stem cells, and to devise the means to generate bio-engineered teeth of predetermined size and shape. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nelson Monteiro
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| | - Pamela C. Yelick
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| |
Collapse
|
16
|
Wu H, Lei P, Liu G, Shrike Zhang Y, Yang J, Zhang L, Xie J, Niu W, Liu H, Ruan J, Hu Y, Zhang C. Reconstruction of Large-scale Defects with a Novel Hybrid Scaffold Made from Poly(L-lactic acid)/Nanohydroxyapatite/Alendronate-loaded Chitosan Microsphere: in vitro and in vivo Studies. Sci Rep 2017; 7:359. [PMID: 28337023 PMCID: PMC5428684 DOI: 10.1038/s41598-017-00506-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/28/2017] [Indexed: 01/26/2023] Open
Abstract
A chitosan-based microsphere delivery system has been fabricated for controlled release of alendronate (AL). The present study aimed to incorporate the chitosan/hydroxyapatite microspheres-loaded with AL (CH/nHA-AL) into poly(L-lactic acid)/nanohydroxyapatite (PLLA/nHA) matrix to prepare a novel microspheres-scaffold hybrid system (CM-ALs) for drug delivery and bone tissue engineering application. The characteristics of CM-ALs scaffolds containing 10% and 20% CH/nHA-AL were evaluated in vitro, including surface morphology and porosity, mechanical properties, drug release, degradation, and osteogenic differentiation. The in vivo bone repair for large segmental radius defects (1.5 cm) in a rabbit model was evaluated by radiography and histology. In vitro study showed more sustained drug release of CM-AL-containing scaffolds than these of CM/nHA-AL and PLLA/nHA/AL scaffolds, and the mechanical and degradation properties of CM-ALs (10%) scaffolds were comparable to that of PLLA/nHA control. The osteogenic differentiation of adipose-derived stem cells (ASCs) was significantly enhanced as indicated by increased alkaline phosphates (ALP) activity and calcium deposition. In vivo study further showed better performance of CM-ALs (10%) scaffolds with complete repair of large-sized bone defects within 8 weeks. A microspheres-scaffold-based release system containing AL-encapsulated chitosan microspheres was successfully fabricated in this study. Our results suggested the promising application of CM-ALs (10%) scaffolds for drug delivery and bone tissue engineering.
Collapse
Affiliation(s)
- Hongwei Wu
- Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Pengfei Lei
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410011, China.,Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, United States
| | - Gengyan Liu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Centre, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, 02115, USA
| | - Jingzhou Yang
- Biomaterials Innovation Research Centre, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, 02115, USA
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410011, China.,Department of Neurosurgery, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Jie Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wanting Niu
- Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, United States.,Department of Orthopedics, VA Boston Healthcare System, Boston, MA, USA
| | - Hua Liu
- Biomaterials Innovation Research Centre, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, 02115, USA.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jianming Ruan
- Powder Metallurgy Research Institute, Central South University, Changsha, 410083, Hunan, China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Chaoyue Zhang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
17
|
Kouskoura T, Katsaros C, von Gunten S. The Potential Use of Pharmacological Agents to Modulate Orthodontic Tooth Movement (OTM). Front Physiol 2017; 8:67. [PMID: 28228735 PMCID: PMC5296343 DOI: 10.3389/fphys.2017.00067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/24/2017] [Indexed: 11/13/2022] Open
Abstract
The biological processes that come into play during orthodontic tooth movement (OTM) have been shown to be influenced by a variety of pharmacological agents. The effects of such agents are of particular relevance to the clinician as the rate of tooth movement can be accelerated or reduced as a result. This review aims to provide an overview of recent insights into drug-mediated effects and the potential use of drugs to influence the rate of tooth movement during orthodontic treatment. The limitations of current experimental models and the need for well-designed clinical and pre-clinical studies are also discussed.
Collapse
Affiliation(s)
- Thaleia Kouskoura
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern Bern, Switzerland
| | - Christos Katsaros
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern Bern, Switzerland
| | | |
Collapse
|
18
|
Fujii K, Ito A, Mutsuzaki H, Murai S, Sogo Y, Hara Y, Yamazaki M. Reducing the risk of impaired bone apposition to titanium screws with the use of fibroblast growth factor-2-apatite composite layer coating. J Orthop Surg Res 2017; 12:1. [PMID: 28057033 PMCID: PMC5217243 DOI: 10.1186/s13018-016-0501-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/06/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Loosening of screws is a common problem in orthopedic and maxillofacial surgery. Modifying the implant surface to improve the mechanical strength of screws has been tried and reported. We developed screws coated with fibroblast growth factor-2 (FGF-2)-apatite composite layers. We then showed, in a percutaneous external fixation model, that this composite layer had the ability to hold and release FGF-2 slowly, thereby reducing the risk of pin tract infection of the percutaneous external fixation. The objective of the current study was to clarify the effect of FGF-2-apatite composite layers on titanium screws on bone formation around the screw. METHODS We analyzed samples of previously performed animal experiments. The screws were coated with FGF-2-apatite composite layers by immersing them in supersaturated calcium phosphate solutions containing FGF-2. Then, the uncoated, apatite-coated, and FGF-2-apatite composite layer-coated screws were implanted percutaneously in rabbits. Finally, using inflammation-free histological sections, we histomorphometrically assessed them for the presence of bone formation. Weibull plot analysis was then applied to the data. RESULTS On average, screws coated with FGF-2-apatite composite layers showed a significantly higher bone apposition rate than the uncoated or apatite-coated screws. Although the difference in the average bone apposition rate was small, the FGF-2-apatite composite layers produced a significant, marked reduction in the incidence of impaired bone formation around the screw compared with the incidence in the absence of FGF-2 (uncoated and apatite-coated screws). The probability of resulting in a bone apposition rate equal to or less than 63.75%, for example, is 3.5 × 10-4 for screws coated with the FGF-2-apatite composite layers versus 0.05 for screws in the absence of FGF-2. CONCLUSIONS FGF-2-apatite composite layer coating significantly reduced the risk of impaired bone apposition to the screw. Thus, it is feasible to use titanium screws coated with FGF-2-apatite composite layers as internal fixation screws to decrease the risk of loosening.
Collapse
Affiliation(s)
- Kengo Fujii
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Atsuo Ito
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Hirotaka Mutsuzaki
- Department of Orthopaedic Surgery, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami Ami-machi, Inashiki-gun, Ibaraki, 300-0394, Japan
| | - Shinji Murai
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yu Sogo
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yuki Hara
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
19
|
Kim SE, Yun YP, Shim KS, Kim HJ, Park K, Song HR. 3D printed alendronate-releasing poly(caprolactone) porous scaffolds enhance osteogenic differentiation and bone formation in rat tibial defects. Biomed Mater 2016; 11:055005. [DOI: 10.1088/1748-6041/11/5/055005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Nakasa T, Yoshizuka M, Andry Usman M, Elbadry Mahmoud E, Ochi M. MicroRNAs and Bone Regeneration. Curr Genomics 2016; 16:441-52. [PMID: 27019619 PMCID: PMC4765532 DOI: 10.2174/1389202916666150817213630] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/18/2015] [Accepted: 05/22/2015] [Indexed: 12/14/2022] Open
Abstract
Bone has multiple functions, both morphologically and physiologically, and it frequently features in the pathological condition, including fracture and osteoporosis. For bone regeneration therapy, the regulation of osteoblast differentiation is important. MicroRNA (miRNA)s are short noncoding RNA which regulate gene expression at the post-transcriptional level. MiRNAs play an important role not only in a variety of other cellular processes including differentiation, proliferation, and apoptosis but also in the pathogenesis of human diseases. Recently, miRNAs have been known to participate in osteoblast differentiation by regulating several signaling pathways including transcription
factors. New insight into the mechanism during osteogenes is affected by miRNAs has been gained. Moreover, therapeutic trials for bone diseases including osteoporosis, fracture and bone defects targeting miRNAs have been examined in animal models. MiRNA therapy will enable development of a bone regeneration therapy.
Collapse
Affiliation(s)
- Tomoyuki Nakasa
- Department of Orthopaedics Surgery, Integrated Health Sciences, Institute of Biomedical & health Science, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima City, 734-8551, Japan
| | - Masaaki Yoshizuka
- Department of Orthopaedics Surgery, Integrated Health Sciences, Institute of Biomedical & health Science, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima City, 734-8551, Japan
| | - Muhammad Andry Usman
- Department of Orthopaedics Surgery, Integrated Health Sciences, Institute of Biomedical & health Science, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima City, 734-8551, Japan
| | - Elhussein Elbadry Mahmoud
- Department of Orthopaedics Surgery, Integrated Health Sciences, Institute of Biomedical & health Science, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima City, 734-8551, Japan
| | - Mitsuo Ochi
- Department of Orthopaedics Surgery, Integrated Health Sciences, Institute of Biomedical & health Science, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima City, 734-8551, Japan
| |
Collapse
|
21
|
Hur W, Park M, Lee JY, Kim MH, Lee SH, Park CG, Kim SN, Min HS, Min HJ, Chai JH, Lee SJ, Kim S, Choi TH, Choy YB. Bioabsorbable bone plates enabled with local, sustained delivery of alendronate for bone regeneration. J Control Release 2016; 222:97-106. [DOI: 10.1016/j.jconrel.2015.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 11/27/2015] [Accepted: 12/08/2015] [Indexed: 11/15/2022]
|
22
|
The Effect of Alendronate Loaded Biphasic Calcium Phosphate Scaffolds on Bone Regeneration in a Rat Tibial Defect Model. Int J Mol Sci 2015; 16:26738-53. [PMID: 26561810 PMCID: PMC4661841 DOI: 10.3390/ijms161125982] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 01/02/2023] Open
Abstract
This study investigated the effect of alendronate (Aln) released from biphasic calcium phosphate (BCP) scaffolds. We evaluated the in vitro osteogenic differentiation of Aln/BCP scaffolds using MG-63 cells and the in vivo bone regenerative capability of Aln/BCP scaffolds using a rat tibial defect model with radiography, micro-computed tomography (CT), and histological examination. In vitro studies included the surface morphology of BCP and Aln-loaded BCP scaffolds visualized using field-emission scanning electron microscope, release kinetics of Aln from BCP scaffolds, alkaline phosphatase (ALP) activity, calcium deposition, and gene expression. The in vitro studies showed that sustained release of Aln from the BCP scaffolds consisted of porous microstructures, and revealed that MG-63 cells cultured on Aln-loaded BCP scaffolds showed significantly increased ALP activity, calcium deposition, and gene expression compared to cells cultured on BCP scaffolds. The in vivo studies using radiograph and histology examination revealed abundant callus formation and bone maturation at the site in the Aln/BCP groups compared to the control group. However, solid bony bridge formation was not observed at plain radiographs until 8 weeks. Micro-CT analysis revealed that bone mineral density and bone formation volume were increased over time in an Aln concentration-dependent manner. These results suggested that Aln/BCP scaffolds have the potential for controlling the release of Aln and enhance bone formation and mineralization.
Collapse
|
23
|
Wang Y, Zhu G, Li N, Song J, Wang L, Shi X. Small molecules and their controlled release that induce the osteogenic/chondrogenic commitment of stem cells. Biotechnol Adv 2015; 33:1626-40. [PMID: 26341834 DOI: 10.1016/j.biotechadv.2015.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 12/17/2022]
Abstract
Stem cell-based tissue engineering plays a significant role in skeletal system repair and regenerative therapies. However, stem cells must be differentiated into specific mature cells prior to implantation (direct implantation may lead to tumour formation). Natural or chemically synthesised small molecules provide an efficient, accurate, reversible, and cost-effective way to differentiate stem cells compared with bioactive growth factors and gene-related methods. Thus, investigating the influences of small molecules on the differentiation of stem cells is of great significance. Here, we review a series of small molecules that can induce or/and promote the osteogenic/chondrogenic commitment of stem cells. The controlled release of these small molecules from various vehicles for stem cell-based therapies and tissue engineering applications is also discussed. The extensive studies in this field represent significant contributions to stem cell-based tissue engineering research and regenerative medicine.
Collapse
Affiliation(s)
- Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Guanglin Zhu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Nanying Li
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Juqing Song
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
24
|
Alendronate-Eluting Biphasic Calcium Phosphate (BCP) Scaffolds Stimulate Osteogenic Differentiation. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26221587 PMCID: PMC4499637 DOI: 10.1155/2015/320713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biphasic calcium phosphate (BCP) scaffolds have been widely used in orthopedic and dental fields as osteoconductive bone substitutes. However, BCP scaffolds are not satisfactory for the stimulation of osteogenic differentiation and maturation. To enhance osteogenic differentiation, we prepared alendronate- (ALN-) eluting BCP scaffolds. The coating of ALN on BCP scaffolds was confirmed by scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). An in vitro release study showed that release of ALN from ALN-eluting BCP scaffolds was sustained for up to 28 days. In vitro results revealed that MG-63 cells grown on ALN-eluting BCP scaffolds exhibited increased ALP activity and calcium deposition and upregulated gene expression of Runx2, ALP, OCN, and OPN compared with the BCP scaffold alone. Therefore, this study suggests that ALN-eluting BCP scaffolds have the potential to effectively stimulate osteogenic differentiation.
Collapse
|
25
|
Chen Z, Zhao M, Liu K, Wan Y, Li X, Feng G. Novel chitosan hydrogel formed by ethylene glycol chitosan, 1,6-diisocyanatohexan and polyethylene glycol-400 for tissue engineering scaffold: in vitro and in vivo evaluation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1903-1913. [PMID: 24805882 DOI: 10.1007/s10856-014-5223-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/19/2014] [Indexed: 06/03/2023]
Abstract
Traditional chitosan hydrogels were prepared by chemical or physical crosslinker, and both of the two kinds of hydrogels have their merits and demerits. In this study, researchers attempted to prepare one kind of chitosan hydrogel by slightly crosslinker, which could combine the advantages of the two kinds of hydrogels. In this experiment, the crosslinker was formed by a reaction between the isocyanate group of 1,6-diisocyanatohexan and the hydroxyl group of polyethylene glycol-400 (PEG-400), then the crosslinker reacted with the amidine and the hydroxyl group of ethylene glycol chitosan to form the network structure. Physical properties of the hydrogel were tested by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and biodegradation. Biocompatibility was assessed by cell implantation in vitro and the scaffold was used as a cartilage tissue engineering scaffold to repair a defect in rabbit knee joints in vivo. FTIR results show the formation of a covalent bond during thickening of the ethylene glycol chitosan. SEM and degradation experiments showed that the ethylene glycol chitosan hydrogel is a 3-D, porous, and degradable scaffold. The hydrogel contained 2% ethylene glycol chitosan and 10 μl crosslinker was selected for the biocompatibility experiment in vitro and in vivo. After chondrocytes were cultured in the ethylene glycol chitosan hydrogel scaffold for 1 week cells exhibited clustered growth and had generated extracellular matrix on the scaffold in vitro. The results in vivo showed that hydrogel-chondrocytes promoted the repair of defect in rabbits. Based on these results, it could be concluded that ethylene glycol chitosan hydrogel is a scaffold with excellent physicochemical properties and it is a promising tissue engineering scaffold.
Collapse
Affiliation(s)
- Zhu Chen
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital and the Second Clinical Institute of North Sichuan Medical University, Nanchong, 637000, Sichuan, China
| | | | | | | | | | | |
Collapse
|
26
|
Lai WF, Lee JM, Jung HS. Molecular and engineering approaches to regenerate and repair teeth in mammals. Cell Mol Life Sci 2014; 71:1691-701. [PMID: 24270857 PMCID: PMC11113857 DOI: 10.1007/s00018-013-1518-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 12/16/2022]
Abstract
Continuous replacement of teeth throughout the lifespan of an individual is possibly basal for most of the vertebrates including fish and reptiles; however, mammals generally have a limited capacity of tooth renewal. The ability to induce cellular differentiation in adults to replace lost or damaged cells in mammals, or to tissue-engineer organs in vitro, has hence become one of the major goals of regenerative medicine. In this article, we will revisit some of the important signals and tissue interactions that regulate mammalian tooth development, and will offer a synopsis of the latest progress in tooth regeneration and repair via molecular and engineering approaches. It is hoped that this article will not only offer an overview of recent technologies in tooth regeneration and repair but will also stimulate more interdisciplinary research in this field to turn the pursuit of tooth regeneration and repair into practical reality.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Division in Anatomy and Developmental Biology, Department of Oral Biology, BK21 PLUS Project, Oral Science Research Institute, College of Dentistry, Yonsei Center of Biotechnology, Yonsei University, 50 Yonsei-ro Seodaemum-gu, Seoul, 120-752 Korea
| | - Jong-Min Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, BK21 PLUS Project, Oral Science Research Institute, College of Dentistry, Yonsei Center of Biotechnology, Yonsei University, 50 Yonsei-ro Seodaemum-gu, Seoul, 120-752 Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, BK21 PLUS Project, Oral Science Research Institute, College of Dentistry, Yonsei Center of Biotechnology, Yonsei University, 50 Yonsei-ro Seodaemum-gu, Seoul, 120-752 Korea
- Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
27
|
Kim SE, Yun YP, Park K, Kim HJ, Lee DW, Kim JW, Yang DH, Suh DH. The effects of functionalized titanium with alendronate and bone morphogenic protein-2 for improving osteoblast activity. Tissue Eng Regen Med 2013. [DOI: 10.1007/s13770-013-1098-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|