1
|
Bauer L, Antunović M, Ivanković H, Ivanković M. Biomimetic Scaffolds Based on Mn 2+-, Mg 2+-, and Sr 2+-Substituted Calcium Phosphates Derived from Natural Sources and Polycaprolactone. Biomimetics (Basel) 2024; 9:30. [PMID: 38248604 PMCID: PMC10813741 DOI: 10.3390/biomimetics9010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/18/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
The occurrence of bone disorders is steadily increasing worldwide. Bone tissue engineering (BTE) has emerged as a promising alternative to conventional treatments of bone defects, developing bone scaffolds capable of promoting bone regeneration. In this research, biomimetic scaffolds based on ion-substituted calcium phosphates, derived from cuttlefish bone, were prepared using a hydrothermal method. To synthesize Mn2+-substituted scaffolds, three different manganese concentrations (corresponding to 1, 2.5, and 5 mol% Mn substitutions for Ca into hydroxyapatite) were used. Also, syntheses with the simultaneous addition of an equimolar amount (1 mol%) of two (Mg2+ and Sr2+) or three ions (Mn2+, Mg2+, and Sr2+) were performed. A chemical, structural, and morphological characterization was carried out using X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The effects of the ion substitutions on the lattice parameters, crystallite sizes, and fractions of the detected phases were discussed. Multi-substituted (Mn2+, Mg2+, and Sr2+) scaffolds were coated with polycaprolactone (PCL) using simple vacuum impregnation. The differentiation of human mesenchymal stem cells (hMSCs), cultured on the PCL-coated scaffold, was evaluated using histology, immunohistochemistry, and reverse transcription-quantitative polymerase chain reaction analyses. The expression of collagen I, alkaline phosphatase, and dentin matrix protein 1 was detected. The influence of PCL coating on hMSCs behavior is discussed.
Collapse
Affiliation(s)
| | | | | | - Marica Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10001 Zagreb, Croatia; (L.B.); (M.A.); (H.I.)
| |
Collapse
|
2
|
Bian A, Jia F, Wu Z, Li M, Yang H, Huang X, Xie L, Qiao H, Lin H, Huang Y. In Vitro Cytocompatibility and Anti‐biofilm Properties of Electrodeposited Ternary‐Ion‐Doped Hydroxyapatite Coatings on Ti for Orthopaedic Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202203683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Anqi Bian
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
| | - Fenghuan Jia
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
| | - Zongze Wu
- Department of Interventional Radiology Shenzhen People's Hospital (The Second Clinical Medical College Jinan University The First Affiliated Hospital Southern University of Science and Technology) Shenzhen 518020 China
| | - Meiyu Li
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
| | - Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education Wuhan Institute of Technology Wuhan 430205 China
| | - Xiao Huang
- School of Physical Education Guangxi University of Science and Technology Liuzhou 545006 China
| | - Lei Xie
- School of Medicine University of Electronic Science and Technology of China Chengdu 610054 China
| | - Haixia Qiao
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
| | - He Lin
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Yong Huang
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
- School of Medicine University of Electronic Science and Technology of China Chengdu 610054 China
| |
Collapse
|
3
|
Yang X, Xiong S, Zhou J, Zhang Y, He H, Chen P, Li C, Wang Q, Shao Z, Wang L. Coating of manganese functional polyetheretherketone implants for osseous interface integration. Front Bioeng Biotechnol 2023; 11:1182187. [PMID: 37207123 PMCID: PMC10191212 DOI: 10.3389/fbioe.2023.1182187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Polyetheretherketone (PEEK) has been used extensively in biomedical engineering and it is highly desirable for PEEK implant to possess the ability to promote cell growth and significant osteogenic properties and consequently stimulate bone regeneration. In this study, a manganese modified PEEK implant (PEEK-PDA-Mn) was fabricated via polydopamine chemical treatment. The results showed that manganese was successfully immobilized on PEEK surface, and the surface roughness and hydrophilicity significantly improved after surface modification. Cell experiments in vitro demonstrated that the PEEK-PDA-Mn possesses superior cytocompatibility in cell adhesion and spread. Moreover, the osteogenic properties of PEEK-PDA-Mn were proved by the increased expression of osteogenic genes, alkaline phosphatase (ALP), and mineralization in vitro. Further rat femoral condyle defect model was utilized to assess bone formation ability of different PEEK implants in vivo. The results revealed that the PEEK-PDA-Mn group promoted bone tissue regeneration in defect area. Taken together, the simple immersing method can modify the surface of PEEK, giving outstanding biocompatibility and enhanced bone tissue regeneration ability to the modified PEEK, which could be applied as an orthopedic implant in clinical.
Collapse
Affiliation(s)
- Xin Yang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Shouliang Xiong
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yinchang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Huazheng He
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Pingbo Chen
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Congming Li
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Qiang Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
- *Correspondence: Qiang Wang, ; Zhiqiang Shao, ; Lei Wang,
| | - Zhiqiang Shao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- *Correspondence: Qiang Wang, ; Zhiqiang Shao, ; Lei Wang,
| | - Lei Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
- *Correspondence: Qiang Wang, ; Zhiqiang Shao, ; Lei Wang,
| |
Collapse
|
4
|
Rajendran R, Dondapati S. Insights of Microstructural Features and Their Effect on Degradation and the In Vitro Bioactivity Response of as-Cast Mg-Sn Alloys for Orthopedic Implant Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6327. [PMID: 36143640 PMCID: PMC9500764 DOI: 10.3390/ma15186327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
The present work focuses on a deep understanding of microstructural evolution and phase formation in a binary Mg-Sn alloy system. Mg-xSn (x = 1, 5, 10 wt.%) alloys were cast using a squeeze casting technique. Phase identification and microstructural analysis were done using XRD (X-ray Diffraction) and FESEM with EDS (Field Emission Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy), respectively. The mechanical behavior of the alloys under study was evaluated by conducting a compression test. The corrosion behavior of all the alloys were intricately studied using electrochemical corrosion tests and an immersion test in the simulated body fluid (SBF) environment for different immersion periods. The bioactivity response of Mg-Sn alloys systems under this study was investigated by immersing the samples in SBF for 14 days. From the analysis of the results, it was understood that the amount of Sn addition has a large influence on the metallurgical, corrosion, and bioactivity properties. Interesting facts about the intermetallic phase formation and segregation of Sn were observed when the wt.% of Sn was varied in the alloy and the evolution of the microstructure was described clearly. Mechanical properties of Mg-Sn alloys were improved, as the Sn content increased up to 5 wt.% and declined in the case of a 10 wt.% Sn addition. A similar trend was observed even in the case of corrosion resistance and bioactivity properties. Among the alloy compositions studied, Mg with a 5 wt.% addition has proved to be a promising candidate material for orthopedic implant applications with an acceptable elastic modulus, higher corrosion resistance, and an excellent bioactive response.
Collapse
|
5
|
Electrodeposition of Calcium Phosphate Coatings on Metallic Substrates for Bone Implant Applications: A Review. COATINGS 2022. [DOI: 10.3390/coatings12040539] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review summaries more than three decades of scientific knowledge on electrodeposition of calcium phosphate coatings. This low-temperature process aims to make the surface of metallic bone implants bioactive within a physiological environment. The first part of the review describes the reaction mechanisms that lead to the synthesis of a bioactive coating. Electrodeposition occurs in three consecutive steps that involve electrochemical reactions, pH modification, and precipitation of the calcium phosphate coating. However, the process also produces undesired dihydrogen bubbles during the deposition because of the reduction of water, the solvent of the electrolyte solution. To prevent the production of large amounts of dihydrogen bubbles, the current density value is limited during deposition. To circumvent this issue, the use of pulsed current has been proposed in recent years to replace the traditional direct current. Thanks to breaking times, dihydrogen bubbles can regularly escape from the surface of the implant, and the deposition of the calcium phosphate coating is less disturbed by the accumulation of bubbles. In addition, the pulsed current has a positive impact on the chemical composition, morphology, roughness, and mechanical properties of the electrodeposited calcium phosphate coating. Finally, the review describes one of the most interesting properties of electrodeposition, i.e., the possibility of adding ionic substituents to the calcium phosphate crystal lattice to improve the biological performance of the bone implant. Several cations and anions are reviewed from the scientific literature with a description of their biological impact on the physiological environment.
Collapse
|
6
|
Li Y, Wang W, Han J, Li Z, Wang Q, Lin X, Ge K, Zhou G. Synthesis of Silver- and Strontium-Substituted Hydroxyapatite with Combined Osteogenic and Antibacterial Activities. Biol Trace Elem Res 2022; 200:931-942. [PMID: 33797703 DOI: 10.1007/s12011-021-02697-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/28/2021] [Indexed: 01/19/2023]
Abstract
Infection in bone transplantation process is attracting considerable attention. The current study synthesizes silver/strontium co-substituted hydroxyapatite (Ag/Sr-HA) nanoparticles with combined osteogenic and antibacterial activities. Different concentrations of silver-substituted hydroxyapatite (Ag-HA) nanoparticles were synthesized by hydrothermal method, and then their physicochemical properties were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), and energy-dispersive X-ray spectroscopy (EDS). Then, Sr was added as secondary element into Ag-HA to improve the biocompatibility of substrate. The antibacterial experiments indicated that Ag-HA had excellent antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The effects of prepared samples on cell proliferation and differentiation were evaluated using MC3T3-E1 cells in vitro. The results showed that Sr substitution enhanced cell proliferation and differentiation, upregulated expression of osteogenic genes, and induced mineralization of cells. The substitution of Sr in Ag/Sr-HA nanoparticles can effectively alleviate the negative effects of Ag and enhance the biological activity of HA. Thus, the synthesized Ag/Sr-HA nanoparticles will serve as a potential candidate for application of biomedical implants with excellent osteogenic and antibacterial ability.
Collapse
Affiliation(s)
- Yunfei Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Wenying Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Jing Han
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Zirui Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Qiuxiang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Xue Lin
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Kun Ge
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Guoqiang Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding, 071000, China.
| |
Collapse
|
7
|
Electrochemical Surface Biofunctionalization of Titanium through Growth of TiO2 Nanotubes and Deposition of Zn Doped Hydroxyapatite. COATINGS 2022. [DOI: 10.3390/coatings12010069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The current research aim is to biofunctionalize pure titanium (Ti, grade IV) substrate with titania nanotubes and Zn doped hydroxyapatite-based coatings by applying a duplex electrochemical treatment, and to evaluate the influence of Zn content on the physico-chemical properties of hydroxyapatite (HAp). The obtained nanostructured surfaces were covered with HAp-based coatings doped with Zn in different concentrations by electrochemical deposition in pulsed galvanostatic mode. The obtained surfaces were characterized in terms of morphology, elemental and phasic composition, chemical bonds, roughness, and adhesion. The nanostructured surface consisted of titania nanotubes (NT), aligned, vertically oriented, and hollow, with an inner diameter of ~70 nm. X-ray Diffraction (XRD) analysis showed that the nanostructured surface consists of an anatase phase and some rutile peaks as a secondary phase. The morphology of all coatings consisted of ribbon like-crystals, and by increasing the Zn content the coating became denser due to the decrement of the crystals’ dimensions. The elemental and phase compositions evidenced that HAp was successfully doped with Zn through the pulsed galvanostatic method on the Ti nanostructured surfaces. Fourier Transform Infrared spectroscopy (FTIR) and XRD analysis confirmed the presence of HAp in all coatings, while the adhesion test showed that the addition of a high quantity leads to some delamination. Based on the obtained results, it can be said that the addition of Zn enhances the properties of HAp, and through proper experimental design, the concentration of Zn can be modulated to achieve coatings with tunable features.
Collapse
|
8
|
Duan J, Wang J, Di Y, Yang Y, Yang Y. Bio-corrosion behavior, antibacterial property and interaction with osteoblast of laser in-situfabricated Ti-Si-Cu coatings on Ti-6Al-4V alloy. Biomed Mater 2021; 16. [PMID: 34416742 DOI: 10.1088/1748-605x/ac1f9d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/20/2021] [Indexed: 11/12/2022]
Abstract
Ti-Si-xCu coatings (TS-xC,x= 5, 10 and 15 wt.%) with advanced bio-corrosion resistance, excellent antibacterial property and biocompatibility were laser cladded on Ti-6Al-4V (TAV) substrate which is widely used as endosseous implants. The bio-corrosion resistance of the TAV substrate was improved due to the presence of Ti5Si3and TiCu phases in the coatings. The addition of Cu in the precursor contributes to the improvement of the antibacterial property of TAV substrate. Meanwhile, induced normal cytoskeleton, well-developed focal adhesion contacts, significant higher cell attachment and proliferation rate were observed for the TS-xC coated samples due to the formation of micro-textured morphology and presence of new phases. The bio-corrosion resistance and antibacterial property depend on Cu content addition in the TS-xC precursor. The results provide a way to fabricate such multiple functional biocoating that would improve the bio-corrosion resistance, antibacterial performance and biocompatibility of TAV.
Collapse
Affiliation(s)
- Jingzhu Duan
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Juncai Wang
- Department of Ophthalmology, Dashiqiao Luhe Hospital, Dashiqiao 115100, People's Republic of China
| | - Yu Di
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Yuling Yang
- School of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yang Yang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
9
|
Karunakaran G, Cho EB, Thirumurugan K, Kumar GS, Kolesnikov E, Boobalan S, Janarthanan G, Pillai MM, Rajendran S. Mesoporous Mn-doped hydroxyapatite nanorods obtained via pyridinium chloride enabled microwave-assisted synthesis by utilizing Donax variabilis seashells for implant applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112170. [PMID: 34082971 DOI: 10.1016/j.msec.2021.112170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 11/26/2022]
Abstract
Manganese-doped mesoporous hydroxyapatite (MnHAp) nanorods, a bio-apatite were synthesized via pyridinium chloride mediated microwave approach using bio-waste Donax variabilis seashells to treat orthopedic infections. This is the first report on using pyridinium chloride mediated mesoporous MnHAp nanorods synthesis. Pure and Mn doped HAp samples were examined using Raman spectroscopy, X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) studies to confirm the prepared HAp nanorods. Furthermore, the fabrication of manganese-doped HAp was successful with the formation of a hexagonal crystal lattice without disturbing the HAp phase. It is because, at the time of synthesis, PO43- ions form an electrostatic interaction with the Mn ions. Furthermore, Mn-doped HAp samples showed a reduction in their sizes of 15, 10-15, 5-10 nm width, and 80-100, 10-15, 20-30 nm length with varied pore diameters and surface area. The pure HAp, MnHAp-1, MnHAp-2, and MnHAp-3 nanorods disclose the surface area of 39.4, 18.0, 49.2, and 80.4 m2 g-1, with a pore volume of 0.0102, 0.0047, 0.0143, and 0.0447 cm3 g-1, the corresponding pore diameter was estimated to be 6, 7, 6, and 4 nm, respectively. Moreover, antibacterial activity reveals effective bactericidal action against infections causing pathogens whereas cytotoxicity examination (MTT assay), and zebrafish results reveal their non-toxic behavior. Therefore, it is evident from the study, that rapid fabrication of mesoporous and diverse structured MnHAp nanorods could be convenient with pyridinium chloride enabled microwave-assisted method as a bactericidal biomaterial for implant applications.
Collapse
Affiliation(s)
- Gopalu Karunakaran
- Biosensor Research Institute, Department of Fine Chemistry, Seoul National University of Science and Technology (Seoul Tech), Gongneung-ro 232, Nowon-gu, Seoul 01811, Republic of Korea.
| | - Eun-Bum Cho
- Biosensor Research Institute, Department of Fine Chemistry, Seoul National University of Science and Technology (Seoul Tech), Gongneung-ro 232, Nowon-gu, Seoul 01811, Republic of Korea.
| | - Keerthanaa Thirumurugan
- Department of Biotechnology, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode 637 215, Tamil Nadu, India
| | - Govindan Suresh Kumar
- Department of Physics, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode 637 215, Tamil Nadu, India
| | - Evgeny Kolesnikov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology "MISiS", Leninskiy Pr. 4, Moscow 119049, Russia
| | - Selvakumar Boobalan
- Department of Biotechnology, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode 637 215, Tamil Nadu, India
| | - Gopinathan Janarthanan
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore 641004, Tamil Nadu, India; Department of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology (Seoul Tech), Gongneung-ro 232, Nowon-gu, Seoul 01811, Republic of Korea
| | - Mamatha Muraleedharan Pillai
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore 641004, Tamil Nadu, India
| | - Selvakumar Rajendran
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore 641004, Tamil Nadu, India
| |
Collapse
|
10
|
Hydroxyapatite nanophases augmented with selenium and manganese ions for bone regeneration: Physiochemical, microstructural and biological characterization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112149. [PMID: 34082960 DOI: 10.1016/j.msec.2021.112149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 11/23/2022]
Abstract
Hydroxyapatite (HAP) nanopowders with different manganese (Mn) and selenium (Se) contents with Mn/Ca and Se/P molar ratio of 1 mol%, 2.5 mol% and 5 mol% were synthesized by wet-co-chemical precipitation method. The results revealed that with either Mn or Se doping, ion-substituted apatite phase was achieved with good crystallographic features. The combined evidence obtained from spectrometric techniques revealed that nanocrystalline HAP was effectively doped with Mn and Se ions, where Se in form of SeO32- replaced PO43- and Mn2+ replaced Ca2+. Mn and Se doped HAP samples exhibited rod-like and needle-like morphology with strong tendency to form agglomerates. HAP enriched with Mn and Se represented a strong antibacterial effect and also showed prominent blood compatibility. From the biocompatibility testing, it was evident that Mn and Se doped HAP augmented the osteoblasts adhesion, migration and proliferation in a dose-dependent manner. To conclude from this study, it is clearly evident that the doping amount of both Mn and Se ions can determine the size and morphology of the final HAP product. Therefore, Mn and Se HAP nanopowders with molar ratio less than 5 mol% without any heat treatment can provide good crystallographic features to HAP with satisfying micro-structural, thermal and biological properties.
Collapse
|
11
|
Abstract
It is known that iron is found as a trace element in bone tissue, the main inorganic constituent of which is hydroxyapatite. Therefore, iron-doped hydroxyapatite (HApFe) materials could be new alternatives for many biomedical applications. A facile dip coating process was used to elaborate the iron-doped hydroxyapatite (HApFe) nanocomposite coatings. The HApFe suspension used to prepare the coatings was achieved using a co-precipitation method, which was adapted in the laboratory. The quality of the HApFe suspension was assessed through dynamic light scattering (DLS), ultrasonic measurements, and zeta potential values. The hydroxyapatite XRD patterns were observed in the HApFe nanocomposite with no significant shifting of peak positions, thus suggesting that the incorporation of iron did not significantly modify the hydroxyapatite structure. The morphology of the HApFe nanoparticles was evaluated using transmission electron microscopy (TEM). Scanning electron microscopy (SEM) was used in order to investigate the morphologies of HApFe particles and coatings, while their chemical compositions were assessed using energy-dispersive X-ray spectroscopy (EDS). The SEM results suggested that the HApFe consists mainly of spherical nanometric particles and that the surfaces of the coatings are continuous and homogeneous. Additionally, the EDS spectra highlighted the purity of the samples and confirmed the presence of calcium, phosphorous, and iron in the analyzed sample. The in vitro cytotoxicity of the HApFe suspensions and coatings was evidenced using osteoblast cells. The MTT assay showed that both the HApFe suspensions and coatings exhibited biocompatible properties.
Collapse
|
12
|
Electrodeposited Hydroxyapatite-Based Biocoatings: Recent Progress and Future Challenges. COATINGS 2021. [DOI: 10.3390/coatings11010110] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydroxyapatite has become an important coating material for bioimplants, following the introduction of synthetic HAp in the 1950s. The HAp coatings require controlled surface roughness/porosity, adequate corrosion resistance and need to show favorable tribological behavior. The deposition rate must be sufficiently fast and the coating technique needs to be applied at different scales on substrates having a diverse structure, composition, size, and shape. A detailed overview of dry and wet coating methods is given. The benefits of electrodeposition include controlled thickness and morphology, ability to coat a wide range of component size/shape and ease of industrial processing. Pulsed current and potential techniques have provided denser and more uniform coatings on different metallic materials/implants. The mechanism of HAp electrodeposition is considered and the effect of operational variables on deposit properties is highlighted. The most recent progress in the field is critically reviewed. Developments in mineral substituted and included particle, composite HAp coatings, including those reinforced by metallic, ceramic and polymeric particles; carbon nanotubes, modified graphenes, chitosan, and heparin, are considered in detail. Technical challenges which deserve further research are identified and a forward look in the field of the electrodeposited HAp coatings is taken.
Collapse
|
13
|
Bootchanont A, Wechprasit T, Areesamarn N, Pholprom R, Hwangphon T, Temprom L, Amonpattaratkit P, Klysubun W, Yimnirun R. Comparison of local structure between Mg/Mn-doped natural and synthetic hydroxyapatites by X-ray absorption spectroscopy. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.109075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Hsu CS, Haag SL, Bernards MT, Li Q. Evaluation of chlorine substituted hydroxyapatite (ClHAP)/polydopamine composite coatings on Ti64. Colloids Surf B Biointerfaces 2020; 189:110799. [DOI: 10.1016/j.colsurfb.2020.110799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/20/2019] [Accepted: 01/13/2020] [Indexed: 01/15/2023]
|
15
|
Ates T, Dorozhkin SV, Kaygili O, Kom M, Ercan I, Bulut N, Firdolas F, Keser S, Gursoy NC, Ozercan IH, Eroksuz Y, İnce T. The effects of Mn and/or Ni dopants on the in vitro/in vivo performance, structural and magnetic properties of β-tricalcium phosphate bioceramics. CERAMICS INTERNATIONAL 2019; 45:22752-22758. [DOI: 10.1016/j.ceramint.2019.07.314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
16
|
A Rapid Response/Recovery Ribbon‐like Hydroxyapatite Humidity Sensor with Loose Spatial Structure. ChemistrySelect 2019. [DOI: 10.1002/slct.201903022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Du Y, Guo JL, Wang J, Mikos AG, Zhang S. Hierarchically designed bone scaffolds: From internal cues to external stimuli. Biomaterials 2019; 218:119334. [PMID: 31306826 PMCID: PMC6663598 DOI: 10.1016/j.biomaterials.2019.119334] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
Bone tissue engineering utilizes three critical elements - cells, scaffolds, and bioactive factors - to recapitulate the bone tissue microenvironment, inducing the formation of new bone. Recent advances in materials development have enabled the production of scaffolds that more effectively mimic the hierarchical features of bone matrix, ranging from molecular composition to nano/micro-scale biochemical and physical features. This review summarizes recent advances within the field in utilizing these features of native bone to guide the hierarchical design of materials and scaffolds. Biomimetic strategies discussed in this review cover several levels of hierarchical design, including the development of element-doped compositions of bioceramics, the usage of molecular templates for in vitro biomineralization at the nanoscale, the fabrication of biomimetic scaffold architecture at the micro- and nanoscale, and the application of external physical stimuli at the macroscale to regulate bone growth. Developments at each level are discussed with an emphasis on their in vitro and in vivo outcomes in promoting osteogenic tissue development. Ultimately, these hierarchically designed scaffolds can complement or even replace the usage of cells and biological elements, which present clinical and regulatory barriers to translation. As the field progresses ever closer to clinical translation, the creation of viable therapies will thus benefit from further development of hierarchically designed materials and scaffolds.
Collapse
Affiliation(s)
- Yingying Du
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jason L Guo
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77251-1892, USA
| | - Jianglin Wang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77251-1892, USA.
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
18
|
Basu S, Basu B. Unravelling Doped Biphasic Calcium Phosphate: Synthesis to Application. ACS APPLIED BIO MATERIALS 2019; 2:5263-5297. [DOI: 10.1021/acsabm.9b00488] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Subhadip Basu
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
19
|
Dual Doping of Silicon and Manganese in Hydroxyapatites: Physicochemical Properties and Preliminary Biological Studies. MATERIALS 2019; 12:ma12162566. [PMID: 31408945 PMCID: PMC6721101 DOI: 10.3390/ma12162566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 11/18/2022]
Abstract
Silicated hydroxyapatite powders enriched with small amounts of manganese (Mn2+) cations were synthesized via two different methods: precipitation in aqueous solution and the solid-state method. The source of Mn2+ ions was manganese acetate, while silicon was incorporated using two different reagents: silicon acetate and sodium metasilicate. Powder X-ray diffraction (PXRD) analysis showed that the powders obtained via the precipitation method consisted of single-phase nanocrystalline hydroxyapatite. In contrast, samples obtained via the solid-state method were heterogenous and contaminated with other phases, (i.e., calcium oxide, calcium hydroxide, and silicocarnotite) arising during thermal treatment. The transmission electron microscope (TEM) images showed powders obtained via the precipitation method were nanosized and elongated, while solid-state synthesis produced spherical microcrystals. The phase identification was complemented by Fourier transform infrared spectroscopy (FTIR). An in-depth analysis via solid-state nuclear magnetic resonance (ssNMR) was carried out, using phosphorus 31P single-pulse Bloch decay (BD) (31P BD) and cross-polarization (CP) experiments from protons to silicon-29 nuclei (1H → 29Si CP). The elemental measurements carried out using wavelength-dispersive X-ray fluorescence (WD-XRF) showed that the efficiency of introducing manganese and silicon ions was between 45% and 95%, depending on the synthesis method and the reagents. Preliminary biological tests on the bacteria Allivibrio fisheri (Microtox®) and the protozoan Spirostomum ambiguum (Spirotox) showed no toxic effect in any of the samples. The obtained materials may find potential application in regenerative medicine, bone implantology, and orthopedics as bone substitutes or implant coatings.
Collapse
|
20
|
Tite T, Popa AC, Balescu LM, Bogdan IM, Pasuk I, Ferreira JMF, Stan GE. Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2081. [PMID: 30355975 PMCID: PMC6266948 DOI: 10.3390/ma11112081] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/13/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022]
Abstract
High-performance bioceramics are required for preventing failure and prolonging the life-time of bone grafting scaffolds and osseous implants. The proper identification and development of materials with extended functionalities addressing socio-economic needs and health problems constitute important and critical steps at the heart of clinical research. Recent findings in the realm of ion-substituted hydroxyapatite (HA) could pave the road towards significant developments in biomedicine, with an emphasis on a new generation of orthopaedic and dentistry applications, since such bioceramics are able to mimic the structural, compositional and mechanical properties of the bone mineral phase. In fact, the fascinating ability of the HA crystalline lattice to allow for the substitution of calcium ions with a plethora of cationic species has been widely explored in the recent period, with consequent modifications of its physical and chemical features, as well as its functional mechanical and in vitro and in vivo biological performance. A comprehensive inventory of the progresses achieved so far is both opportune and of paramount importance, in order to not only gather and summarize information, but to also allow fellow researchers to compare with ease and filter the best solutions for the cation substitution of HA-based materials and enable the development of multi-functional biomedical designs. The review surveys preparation and synthesis methods, pinpoints all the explored cation dopants, and discloses the full application range of substituted HA. Special attention is dedicated to the antimicrobial efficiency spectrum and cytotoxic trade-off concentration values for various cell lines, highlighting new prophylactic routes for the prevention of implant failure. Importantly, the current in vitro biological tests (widely employed to unveil the biological performance of HA-based materials), and their ability to mimic the in vivo biological interactions, are also critically assessed. Future perspectives are discussed, and a series of recommendations are underlined.
Collapse
Affiliation(s)
- Teddy Tite
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - Adrian-Claudiu Popa
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
- Army Centre for Medical Research, RO-010195 Bucharest, Romania.
| | | | | | - Iuliana Pasuk
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - José M F Ferreira
- Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - George E Stan
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| |
Collapse
|
21
|
An In Vitro Corrosion Study of Open Cell Iron Structures with PEG Coating for Bone Replacement Applications. METALS 2018. [DOI: 10.3390/met8070499] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
|
23
|
Gopi D, Bhalaji P, Ramya S, Kavitha L. Evaluation of biodegradability of surface treated AZ91 magnesium alloy in SBF solution. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2014.08.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|