1
|
Fugazzola MC, De Ruijter M, Veraa S, Plomp S, van Buul W, Hermsen G, van Weeren R. A hybrid repair strategy for full-thickness cartilage defects: Long-term experimental study in eight horses. J Orthop Res 2024. [PMID: 39292194 DOI: 10.1002/jor.25972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
The objective of this study was to evaluate a non-resorbable implant for the focal repair of chondral defects in eight adult horses with 12-month follow-up. The bi-layered construct composed of a polycarbonate-urethane-urea biomaterial which was printed in 3D fashion onto a bone anchor was implanted into surgically created osteochondral defects into the femoropatellar joints of eight horses. The analysis of post-mortem outcomes were compared to defects treated with microfracture in the same animal on the contralateral femoropatellar jointfemoropatellar joint. The overall macroscopic scoring after 12 months yielded higher scores in the OCI-treated stifles compared to MF treatment (p = 0.09) with better quality and filling of the defect. Histology revealed good anchorage of repair tissue growing into the 3D structure of the implant and histopathology scoring for adjacent native cartilage showed no difference between groups. MRI and micro-CT showed overall less sclerotic reactions in the surrounding bone in the implant group and no foreign body reaction was detected. Biomechanical analysis of the repair tissue revealed a significantly higher peak modulus (p < 0.05) in the implant group (0.74 ± 0.45) compared to the microfracture control group (0.15 ± 0.11). Dynamic loading yielded higher values for the repair tissue overgrowing the implant group (0.23 ± 0.17) compared to the microfracture control (0.06 ± 0.06) (p < 0.05). The bi-layered osteochondral implant provided a safe implant for focal repair of full-thickness osteochondral defects, as no adverse reaction was seen within the joints and the level of degeneration of adjacent cartilage to the repair site was not different compared to that seen in defects treated with microfracture after 12 months.
Collapse
Affiliation(s)
- Maria C Fugazzola
- Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, Utrecht, The Netherlands
| | - Mylène De Ruijter
- Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefanie Veraa
- Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Plomp
- Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Chen H, Xue L, Gong G, Pan J, Wang X, Zhang Y, Guo J, Qin L. Collagen-based materials in reproductive medicine and engineered reproductive tissues. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-021-00075-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractCollagen, the main component of mammal skin, has been traditionally used in leather manufacturing for thousands of years due to its diverse physicochemical properties. Collagen is the most abundant protein in mammals and the main component of the extracellular matrix (ECM). The properties of collagen also make it an ideal building block for the engineering of materials for a range of biomedical applications. Reproductive medicine, especially human fertility preservation strategies and reproductive organ regeneration, has attracted significant attention in recent years as it is key in resolving the growing social concern over aging populations worldwide. Collagen-based biomaterials such as collagen hydrogels, decellularized ECM (dECM), and bioengineering techniques including collagen-based 3D bioprinting have facilitated the engineering of reproductive tissues. This review summarizes the recent progress in applying collagen-based biomaterials in reproductive. Furthermore, we discuss the prospects of collagen-based materials for engineering artificial reproductive tissues, hormone replacement therapy, and reproductive organ reconstruction, aiming to inspire new thoughts and advancements in engineered reproductive tissues research.
Graphical abstract
Collapse
|
3
|
Chen T, Brial C, McCarthy M, Warren RF, Maher SA. Synthetic PVA Osteochondral Implants for the Knee Joint: Mechanical Characteristics During Simulated Gait. Am J Sports Med 2021; 49:2933-2941. [PMID: 34347534 PMCID: PMC9092221 DOI: 10.1177/03635465211028566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Although polyvinyl alcohol (PVA) implants have been developed and used for the treatment of femoral osteochondral defects, their effect on joint contact mechanics during gait has not been assessed. PURPOSE/HYPOTHESIS The purpose was to quantify the contact mechanics during simulated gait of focal osteochondral femoral defects and synthetic PVA implants (10% and 20% by volume of PVA), with and without porous titanium (pTi) bases. It was hypothesized that PVA implants with a higher polymer content (and thus a higher modulus) combined with a pTi base would significantly improve defect-related knee joint contact mechanics. STUDY DESIGN Controlled laboratory study. METHODS Four cylindrical implants were manufactured: 10% PVA, 20% PVA, and 10% and 20% PVA disks mounted on a pTi base. Devices were implanted into 8 mm-diameter osteochondral defects created on the medial femoral condyles of 7 human cadaveric knees. Knees underwent simulated gait and contact stresses across the tibial plateau were recorded. Contact area, peak contact stress, the sum of stress in 3 regions of interest across the tibial plateau, and the distribution of stresses, as quantified by tracking the weighted center of contact stress throughout gait, were computed for all conditions. RESULTS An osteochondral defect caused a redistribution of contact stress across the plateau during simulated gait. Solid PVA implants did not improve contact mechanics, while the addition of a porous metal base led to significantly improved joint contact mechanics. Implants consisting of a 20% PVA disk mounted on a pTi base significantly improved the majority of contact mechanics parameters relative to the empty defect condition. CONCLUSION The information obtained using our cadaveric test system demonstrated the mechanical consequences of femoral focal osteochondral defects and provides biomechanical support to further pursue the efficacy of high-polymer-content PVA disks attached to a pTi base to improve contact mechanics. CLINICAL RELEVANCE As a range of solutions are explored for the treatment of osteochondral defects, our preclinical cadaveric testing model provides unique biomechanical evidence for the continued investigation of novel solutions for osteochondral defects.
Collapse
Affiliation(s)
- Tony Chen
- Department of Biomechanics, Hospital for Special Surgery, New York, New York, USA
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Caroline Brial
- Department of Biomechanics, Hospital for Special Surgery, New York, New York, USA
| | - Moira McCarthy
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York, USA
| | - Russell F. Warren
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York, USA
| | - Suzanne A. Maher
- Department of Biomechanics, Hospital for Special Surgery, New York, New York, USA
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
4
|
Potential In Vitro Tissue-Engineered Anterior Cruciate Ligament by Copolymerization of Polyvinyl Alcohol and Collagen. J Craniofac Surg 2021; 32:799-803. [PMID: 33705039 DOI: 10.1097/scs.0000000000007083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Suitable tissue-engineered scaffolds to replace human anterior cruciate ligament (ACL) are well developed clinically as the development of tissue engineering. As water-soluble polymer compound, polyvinyl alcohol (PVA) has been wildly used as the materials to replace ACL. The aim of this study was to explore the feasibility of constructing tissue-engineered ACL by the copolymerization of PVA and collagen (PVA/COL). METHODS PVA and COL were copolymerized at a mass ratio of 3:1. The pore size and porosity of the scaffold were observed by electron microscope. The maximum tensile strength of the scaffold was determined by electronic tension machine. The cytotoxicity of the scaffold was evaluated by MTT assay. The morphology of ACL cells cultured on the surface of the scaffold was observed by inverted microscope. The degradation of the scaffold was recorded in the rabbit model. RESULTS The average pore size of the polymer scaffold was 100 to 150 μm and the porosity was about 90%. The maximum tensile strength of the scaffold material was 8.10 ± 0.28 MPa. PVA/COL could promote the proliferation ability of 3T3 cells. ACL cells were successfully cultured on the surface of PVA/COL scaffold, with natural growth rate, differentiation, and proliferation. Twenty-four weeks after the plantation of scaffold, obvious degradations were observed in vivo. CONCLUSION The model of in-vitro tissue-engineered ACL was successfully established by PVA/COL scaffolds.
Collapse
|
5
|
Heo SJ, Song KH, Thakur S, Miller LM, Cao X, Peredo AP, Seiber BN, Qu F, Driscoll TP, Shenoy VB, Lakadamyali M, Burdick JA, Mauck RL. Nuclear softening expedites interstitial cell migration in fibrous networks and dense connective tissues. SCIENCE ADVANCES 2020; 6:eaax5083. [PMID: 32596438 PMCID: PMC7304973 DOI: 10.1126/sciadv.aax5083] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/28/2020] [Indexed: 05/22/2023]
Abstract
Dense matrices impede interstitial cell migration and subsequent repair. We hypothesized that nuclear stiffness is a limiting factor in migration and posited that repair could be expedited by transiently decreasing nuclear stiffness. To test this, we interrogated the interstitial migratory capacity of adult meniscal cells through dense fibrous networks and adult tissue before and after nuclear softening via the application of a histone deacetylase inhibitor, Trichostatin A (TSA) or knockdown of the filamentous nuclear protein Lamin A/C. Our results show that transient softening of the nucleus improves migration through microporous membranes, electrospun fibrous matrices, and tissue sections and that nuclear properties and cell function recover after treatment. We also showed that biomaterial delivery of TSA promoted in vivo cellularization of scaffolds by endogenous cells. By addressing the inherent limitations to repair imposed by nuclear stiffness, this work defines a new strategy to promote the repair of damaged dense connective tissues.
Collapse
Affiliation(s)
- Su-Jin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA USA
| | - Kwang Hoon Song
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Shreyasi Thakur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liane M. Miller
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Xuan Cao
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA USA
- Department of Materials Science Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Ana P. Peredo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Breanna N. Seiber
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Feini Qu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Tristan P. Driscoll
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Vivek B. Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Melike Lakadamyali
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason A. Burdick
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Huang J, Liang Y, Huang Z, Xiong J, Wang D. Preparation, Characterization, and Biological Testing of Novel Magnetic Nanocomposite Hydrogels. ACS OMEGA 2020; 5:9733-9743. [PMID: 32391460 PMCID: PMC7203695 DOI: 10.1021/acsomega.9b04080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
To provide a novel approach for the clinical treatment of cartilage tissue defects, we prepared a new type of magnetic nanocomposite hydrogel with an optimal raw material ratio using Fe3O4, polyvinyl alcohol (PVA), and type-II collagen (COLII). Briefly, five groups of PVA and collagen hydrogel matrices with different mass ratios were prepared by a combination of repeated thawing cycles and foam-frozen ice crystal separation methods. Microscopic characterization was conducted using electron microscopy, and the biomechanical properties of each group of hydrogels were then tested. The highest performing component hydrogel matrix was selected after which Fe3O4 with different mass ratios was introduced to construct a new Fe3O4/PVA/COLII hydrogel. The prepared composite hydrogels were also microscopically characterized using electron microscopy along with scanning, measurements for porosity and moisture content, and biomechanical, infrared spectrum and degradation performance testing. CCK-8 detection and staining to determine the amount of living and dead cells were also performed. Collectively, these results showed that PVA/COLII,95:5 was the optimal hydrogel matrix. Using this hydrogel matrix, five groups of composite hydrogels with different Fe3O4 mass ratios were then prepared. There was no significant difference in the microscopic characteristics between these different hydrogels. Fe3O4/PVA/COLII,5:95:5 had better physical properties as well as swelling performance and cell compatibility. The PVA/COLII,95:5 hydrogel matrix was determined to be the best, while the new magnetic nanocomposite hydrogel Fe3O4/PVA/COLII,5:95:5 had good, comprehensive properties.
Collapse
Affiliation(s)
- Jianghong Huang
- Shenzhen
National Key Department of Orthopedics, Shenzhen Second People’s Hospital (The First Hospital Affiliated
to Shenzhen University), Shenzhen 518035, P. R China
- Shenzhen
Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital
Orthopedic Engineering, Shenzhen Second
People’s Hospital (The First Hospital Affiliated to Shenzhen
University), Shenzhen 518035, P. R China
| | - Yujie Liang
- Shenzhen
Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong Province 518020, P. R China
| | - Zhiwang Huang
- Shenzhen
National Key Department of Orthopedics, Shenzhen Second People’s Hospital (The First Hospital Affiliated
to Shenzhen University), Shenzhen 518035, P. R China
- Shenzhen
Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital
Orthopedic Engineering, Shenzhen Second
People’s Hospital (The First Hospital Affiliated to Shenzhen
University), Shenzhen 518035, P. R China
| | - Jianyi Xiong
- Shenzhen
National Key Department of Orthopedics, Shenzhen Second People’s Hospital (The First Hospital Affiliated
to Shenzhen University), Shenzhen 518035, P. R China
- Shenzhen
Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital
Orthopedic Engineering, Shenzhen Second
People’s Hospital (The First Hospital Affiliated to Shenzhen
University), Shenzhen 518035, P. R China
| | - Daping Wang
- Shenzhen
National Key Department of Orthopedics, Shenzhen Second People’s Hospital (The First Hospital Affiliated
to Shenzhen University), Shenzhen 518035, P. R China
- Shenzhen
Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital
Orthopedic Engineering, Shenzhen Second
People’s Hospital (The First Hospital Affiliated to Shenzhen
University), Shenzhen 518035, P. R China
| |
Collapse
|
7
|
Chen T, McCarthy MM, Guo H, Warren R, Maher SA. The Scaffold-Articular Cartilage Interface: A Combined In Vitro and In Silico Analysis Under Controlled Loading Conditions. J Biomech Eng 2019; 140:2680997. [PMID: 29801169 DOI: 10.1115/1.4040121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Indexed: 12/25/2022]
Abstract
The optimal method to integrate scaffolds with articular cartilage has not yet been identified, in part because of our lack of understanding about the mechanobiological conditions at the interface. Our objective was to quantify the effect of mechanical loading on integration between a scaffold and articular cartilage. We hypothesized that increased number of loading cycles would have a detrimental effect on interface integrity. The following models were developed: (i) an in vitro scaffold-cartilage explant system in which compressive sinusoidal loading cycles were applied for 14 days at 1 Hz, 5 days per week, for either 900, 1800, 3600, or 7200 cycles per day and (ii) an in silico inhomogeneous, biphasic finite element model (bFEM) of the scaffold-cartilage construct that was used to characterize interface micromotion, stress, and fluid flow under the prescribed loading conditions. In accordance with our hypothesis, mechanical loading significantly decreased scaffold-cartilage interface strength compared to unloaded controls regardless of the number of loading cycles. The decrease in interfacial strength can be attributed to abrupt changes in vertical displacement, fluid pressure, and compressive stresses along the interface, which reach steady-state after only 150 cycles of loading. The interfacial mechanical conditions are further complicated by the mismatch between the homogeneous properties of the scaffold and the depth-dependent properties of the articular cartilage. Finally, we suggest that mechanical conditions at the interface can be more readily modulated by increasing pre-incubation time before the load is applied, as opposed to varying the number of loading cycles.
Collapse
Affiliation(s)
- Tony Chen
- Department of Biomechanics and Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 e-mail:
| | - Moira M McCarthy
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 e-mail:
| | - Hongqiang Guo
- Department of Biomechanics and Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, th , New York, NY 10021 e-mail:
| | - Russell Warren
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, th , New York, NY 10021 e-mail:
| | - Suzanne A Maher
- Department of Biomechanics and Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, th , New York, NY 10021 e-mail:
| |
Collapse
|
8
|
Donnelly PE, Imbert L, Culley KL, Warren RF, Chen T, Maher SA. Self-assembled monolayers of phosphonates promote primary chondrocyte adhesion to silicon dioxide and polyvinyl alcohol materials. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2019; 30:215-232. [PMID: 30588859 PMCID: PMC6375775 DOI: 10.1080/09205063.2018.1563847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/22/2018] [Indexed: 10/27/2022]
Abstract
The optimal solution for articular cartilage repair has not yet been identified, in part because of the challenges in achieving integration with the host. Coatings have the potential to transform the adhesive features of surfaces, but their application to cartilage repair has been limited. Self-assembled monolayer of phosphonates (SAMPs) have been demonstrated to increase the adhesion of various immortalized cell types to metal and polymer surfaces, but their effect on primary chondrocyte adhesion has not been studied. The objective of this study was to investigate the response of primary chondrocytes to SAMP coatings. We hypothesized a SAMP terminated with an α,ω-bisphosphonic acid, in particular butane-1,4-diphosphonic acid, would increase the number of adherent primary chondrocytes to polyvinyl alcohol (PVA). To test our hypothesis, we first established our ability to successfully modify silicon dioxide (SiO2) surfaces to enable chondrocytes to attach to the surface, without substantial changes in gene expression. Secondly, we applied identical chemistry to PVA, and quantified chondrocyte adhesion. SAMP modification to SiO2 increased chondrocyte adhesion by ×3 after 4 hr and ×4.5 after 24 hr. PVA modification with SAMPs increased chondrocyte adhesion by at least ×31 after 4 and 24 hours. Changes in cell morphology indicated that SAMP modification led to improved chondrocyte adhesion and spreading, without changes in gene expression. In summary, we modified SiO2 and PVA with SAMPs and observed an increase in the number of adherent primary bovine chondrocytes at 4 and 24 hr post-seeding. Mechanisms of chondrocyte interaction with SAMP-modified surfaces require further investigation.
Collapse
Affiliation(s)
- Patrick E. Donnelly
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, USA
| | - Laurianne Imbert
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Kirsty L. Culley
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Russell F. Warren
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Tony Chen
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, USA
| | - Suzanne A. Maher
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
9
|
Sánchez-Téllez DA, Téllez-Jurado L, Rodríguez-Lorenzo LM. Hydrogels for Cartilage Regeneration, from Polysaccharides to Hybrids. Polymers (Basel) 2017; 9:E671. [PMID: 30965974 PMCID: PMC6418920 DOI: 10.3390/polym9120671] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
The aims of this paper are: (1) to review the current state of the art in the field of cartilage substitution and regeneration; (2) to examine the patented biomaterials being used in preclinical and clinical stages; (3) to explore the potential of polymeric hydrogels for these applications and the reasons that hinder their clinical success. The studies about hydrogels used as potential biomaterials selected for this review are divided into the two major trends in tissue engineering: (1) the use of cell-free biomaterials; and (2) the use of cell seeded biomaterials. Preparation techniques and resulting hydrogel properties are also reviewed. More recent proposals, based on the combination of different polymers and the hybridization process to improve the properties of these materials, are also reviewed. The combination of elements such as scaffolds (cellular solids), matrices (hydrogel-based), growth factors and mechanical stimuli is needed to optimize properties of the required materials in order to facilitate tissue formation, cartilage regeneration and final clinical application. Polymer combinations and hybrids are the most promising materials for this application. Hybrid scaffolds may maximize cell growth and local tissue integration by forming cartilage-like tissue with biomimetic features.
Collapse
Affiliation(s)
- Daniela Anahí Sánchez-Téllez
- Instituto Politécnico Nacional-ESIQIE, Depto. Ing. en Metalurgia y Materiales, UPALM-Zacatenco, Mexico City 07738, Mexico.
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
| | - Lucía Téllez-Jurado
- Instituto Politécnico Nacional-ESIQIE, Depto. Ing. en Metalurgia y Materiales, UPALM-Zacatenco, Mexico City 07738, Mexico.
| | - Luís María Rodríguez-Lorenzo
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
- Department Polymeric Nanomaterials and Biomaterials, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
10
|
Boddupalli A, Zhu L, Bratlie KM. Methods for Implant Acceptance and Wound Healing: Material Selection and Implant Location Modulate Macrophage and Fibroblast Phenotypes. Adv Healthc Mater 2016; 5:2575-2594. [PMID: 27593734 DOI: 10.1002/adhm.201600532] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/17/2016] [Indexed: 12/12/2022]
Abstract
This review focuses on materials and methods used to induce phenotypic changes in macrophages and fibroblasts. Herein, we give a brief overview on how changes in macrophages and fibroblasts phenotypes are critical biomarkers for identification of implant acceptance, wound healing effectiveness, and are also essential for evaluating the regenerative capabilities of some hybrid strategies that involve the combination of natural and synthetic materials. The different types of cells present during the host response have been extensively studied for evaluating the reaction to different materials and there are varied material approaches towards fabrication of biocompatible substrates. We discuss how natural and synthetic materials have been used to engineer desirable outcomes in lung, heart, liver, skin, and musculoskeletal implants, and how certain properties such as rigidity, surface shape, and porosity play key roles in the progression of the host response. Several fabrication strategies are discussed to control the phenotype of infiltrating macrophages and fibroblasts: decellularization of scaffolds, surface coatings, implant shape, and pore size apart from biochemical signaling pathways that can inhibit or accelerate unfavorable host responses. It is essential to factor all the different design principles and material fabrication criteria for evaluating the choice of implant materials or regenerative therapeutic strategies.
Collapse
Affiliation(s)
- Anuraag Boddupalli
- Department of Chemical & Biological Engineering; Iowa State University; 2114 Sweeney Hall Ames IA 50011 USA
| | - Lida Zhu
- Department of Chemical & Biological Engineering; Iowa State University; 2114 Sweeney Hall Ames IA 50011 USA
| | - Kaitlin M. Bratlie
- Department of Chemical & Biological Engineering; Iowa State University; 2114 Sweeney Hall Ames IA 50011 USA
- Department of Materials Science & Engineering; Iowa State University; 2220 Hoover Hall Ames IA 50011 USA
- Division of Materials Science & Engineering; Ames National Laboratory; 126 Metals Development Ames IA 50011 USA
| |
Collapse
|
11
|
Pot MW, Gonzales VK, Buma P, IntHout J, van Kuppevelt TH, de Vries RBM, Daamen WF. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies. PeerJ 2016; 4:e2243. [PMID: 27651981 PMCID: PMC5018675 DOI: 10.7717/peerj.2243] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022] Open
Abstract
Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0–100% scale. Implantation of acellular biomaterials significantly improved cartilage regeneration by 15.6% compared to non-treated empty defect controls. The addition of biologics to biomaterials significantly improved cartilage regeneration by 7.6% compared to control biomaterials. No significant differences were found between biomaterials from natural or synthetic origin or between scaffolds, hydrogels and blends. No noticeable differences were found in outcome between animal models. The risk of bias assessment indicated poor reporting for the majority of studies, impeding an assessment of the actual risk of bias. In conclusion, implantation of biomaterials in osteochondral defects improves cartilage regeneration compared to natural healing, which is further improved by the incorporation of biologics.
Collapse
Affiliation(s)
- Michiel W Pot
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Veronica K Gonzales
- Department of Orthopedics, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Pieter Buma
- Department of Orthopedics, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Joanna IntHout
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Rob B M de Vries
- SYRCLE (SYstematic Review Centre for Laboratory animal Experimentation), Central Animal Laboratory, Radboud university medical center, Nijmegen, The Netherlands
| | - Willeke F Daamen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Park DY, Min BH, Lee HJ, Kim YJ, Choi BH. Repair of partial thickness cartilage defects using cartilage extracellular matrix membrane-based chondrocyte delivery system in human Ex Vivo model. Tissue Eng Regen Med 2016; 13:182-190. [PMID: 30603398 PMCID: PMC6170854 DOI: 10.1007/s13770-016-9043-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/26/2015] [Accepted: 07/28/2015] [Indexed: 11/24/2022] Open
Abstract
Treatment options for partial thickness cartilage defects are limited. The purpose of this study was to evaluate the efficacy of the chondrocyte-seeded cartilage extracellular matrix membrane in repairing partial thickness cartilage defects. First, the potential of the membrane as an effective cell carrier was investigated. Secondly, we have applied the chondrocyte-seeded membrane in an ex vivo, partial thickness defect model to analyze its repair potential. After culture of chondrocytes on the membrane in vitro, cell viability assay, cell seeding yield calculation and cell transfer assay were done. Cell carrying ability of the membrane was also tested by seeding different densities of cells. Partial defects were created on human cartilage tissue explants. Cell-seeded membranes were applied using a modified autologous chondrocyte implantation technique on the defects and implanted subcutaneously in nude mice for 2 and 4 weeks. In vitro data showed cell viability and seeding yield comparable to standard culture dishes. Time dependent cell transfer from the membrane was observed. Membranes supported various densities of cells. Ex vivo data showed hyaline-like cartilage tissue repair, integrated on the defect by 4 weeks. Overall, chondrocyte-seeded cartilage extracellular membranes may be an effective and feasible treatment strategy for the repair of partial thickness cartilage defects.
Collapse
Affiliation(s)
- Do Young Park
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea
| | - Byoung-Hyun Min
- Cell Therapy Center, Ajou University School of Medicine, Suwon, Korea
- Department of Orthopedic Surgery, Ajou University School of Medicine, Suwon, Korea
- Department of Molecular Science and Engineering, Ajou University, Suwon, Korea
| | - Hyun Jung Lee
- Cell Therapy Center, Ajou University School of Medicine, Suwon, Korea
| | - Young Jick Kim
- Cell Therapy Center, Ajou University School of Medicine, Suwon, Korea
| | - Byung Hyune Choi
- Division of Biomedical and Bioengineering Science, College of Medicine, Inha University, Incheon, Korea
| |
Collapse
|
13
|
Wu J, Ding Q, Dutta A, Wang Y, Huang YH, Weng H, Tang L, Hong Y. An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration. Acta Biomater 2015; 16:49-59. [PMID: 25644450 DOI: 10.1016/j.actbio.2015.01.027] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/23/2014] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
Abstract
Tissue-derived extracellular matrix (ECM) biomaterials to regenerate the meniscus have gained increasing attention in treating meniscus injuries and diseases, particularly for aged persons and athletes. However, ECM scaffold has poor cell infiltration and can only be implanted using surgical procedures. To overcome these limitations, we developed an injectable ECM hydrogel material from porcine meniscus via modified decellularization and enzymatic digestion. This meniscus-derived ECM hydrogel exhibited a fibrous morphology with tunable compression and initial modulus. It had a good injectability evidenced by syringe injection into mouse subcutaneous tissue. The hydrogel showed good cellular compatibility by promoting the growth of both bovine chondrocytes and mouse 3T3 fibroblasts encapsulated in the hydrogel for 2 weeks. It also promoted cell infiltration as shown in both in vitro cell culture and in vivo mouse subcutaneous implantation. The in vivo study revealed that the ECM hydrogel possessed good tissue compatibility after 7 days of implantation. The results support the great potential of the newly produced injectable meniscus-derived ECM hydrogel specifically for meniscus repair and regeneration.
Collapse
|
14
|
Dresing I, Zeiter S, Auer J, Alini M, Eglin D. Evaluation of a press-fit osteochondral poly(ester-urethane) scaffold in a rabbit defect model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1691-1700. [PMID: 24668269 DOI: 10.1007/s10856-014-5192-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/08/2014] [Indexed: 06/03/2023]
Abstract
The purpose of this study was to evaluate the impact on osteochondral healing of press-fitted multiphasic osteochondral scaffolds consisting of poly(ester-urethane) (PUR) and hydroxyapatite into a cylindric osteochondral defect in the distal non-weight bearing femoral trochlear ridge of the rabbit. Two scaffolds were investigated, one with and one without an intermediate microporous membrane between the cartilage and the bone compartment of the scaffold. A control group without a scaffold placed into the defect was included. After 12 weeks macroscopic and histomorphological analyses were performed. The scaffold was easily press-fitted and provided a stable matrix for tissue repair. The membrane did not demonstrate a detrimental effect on tissue healing compared with the scaffold without membrane. However, the control group had statistically superior healing as reflected by histological differences in the cartilage and subchondral bone compartment between control group and each scaffold group. A more detailed analysis revealed that the difference was localized in the bone compartment healing. The present study demonstrates that an elastomeric PUR scaffold can easily be press-fitted into an osteochondral defect and provides a stable matrix for tissue repair. However, the multi-phasic scaffold did not provide a clear advantage for tissue healing. Future investigations should refine especially the bone phase of the implant to increase its stiffness, biocompatibility and osteoconductive activity. A more precise fabrication technique would be necessary for the matching of tissue organisation.
Collapse
Affiliation(s)
- Iska Dresing
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | | | | | | | | |
Collapse
|