1
|
Nabavizadeh MR, Moazzami F, Gholami A, Mehrabi V, Ghahramani Y. Cytotoxic Effect of Nano Fast Cement and ProRoot Mineral Trioxide Aggregate on L-929 Fibroblast Cells: an in vitro Study. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2022; 23:13-19. [PMID: 35291684 PMCID: PMC8918640 DOI: 10.30476/dentjods.2021.87208.1239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/01/2020] [Accepted: 06/09/2021] [Indexed: 11/29/2022]
Abstract
Statement of the Problem: Endodontic materials that are placed in direct contact with living tissues should be biocompatible. The cytotoxicity of Nano Fast Cement (NFC)
compared to ProRoot Mineral Trioxide Aggregate (ProRoot MTA) must be evaluated. Purpose: This In vitro study aimed to assess the cytotoxic effects of NFC in comparison to ProRoot MTA on L-929 mouse fibroblast cells. Materials and Method: In this animal study, L-929 mouse fibroblast cells were grown in Dulbecco's Modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS) in an atmosphere
of 5% co2/95% air at 37 C̊. A total of 104 cells from the fourth collection were plated in each well of a 96-well micro-titer plate. Materials were mixed according to the
manufacturer’s instruction and placed into the related plastic molds with 5 mm diameter and 3 mm height. After 24 hours and a complete setting, the extracts of the tested
materials were produced at six different concentrations and placed in the related wells. Cells in DMEM served as the negative control group. DMEM alone was used as the positive control group.
Methyl-thiazoltetrazolium (MTT) colorimetric assay was conducted after 24, 48, and 72 hours. The absorbance values were measured by ELISA plate reader at 540 nm wavelength.
Three-way analysis of variance, post-hoc Tukey, LSD, and independent t-test were used for the statistical analyses using SPSS software, version 16.0. Results: There was no statically significant difference between MTA and NFC in cell viability values at different concentrations and different time intervals (p= 0.649).
Viability values were significantly decreased after 72 hours, but there was no significant difference between the first and second MTT assays (p= 0.987).
Cytotoxicity significantly increased at concentrations higher than 6.25 µɡ/ml. Conclusion: Cytotoxicity depends on time, concentration, and cement composition. There was no statistically significant difference between NFC and MTA concerning their cytotoxic
effects on L-929 mouse fibroblast cells.
Collapse
Affiliation(s)
| | - Fariborz Moazzami
- Dept. of Endodontic, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Mehrabi
- Dept. of Endodontic, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasamin Ghahramani
- Dept. of Endodontic, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Fabrication and Characterization of a Nanofast Cement for Dental Restorations. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7343147. [PMID: 34540997 PMCID: PMC8448608 DOI: 10.1155/2021/7343147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022]
Abstract
This study was aimed at fabricating and evaluating the physical and bioproperties of nanofast cement (NFC) as a replacement of the MTA. The cement particles were decreased in nanoscale, and zirconium oxide was used as a radiopacifier. The setting time and radiopacity were investigated according to ISO recommendations. Analysis of color, bioactivity, and cytotoxicity was performed using spectroscopy, simulated body fluid (SBF), and MTT assay. The setting time of cement pastes significantly dropped from 65 to 15 min when the particle sizes decreased from 2723 nm to 322 nm. Nanoparticles provide large surface areas and nucleation sites and thereby a higher hydration rate, so they reduced the setting time. Based on the resulting spectroscopy, the specimens did not exhibit clinically noticeable discoloration. Resistance to discoloration may be due to the resistance of zirconium oxide to decomposition. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and infrared spectroscopy (FTIR) examinations of the immersed SBF samples showed apatite formation that was a reason for its suitable bioactivity. The results of cell culture revealed that NFC is nontoxic. This study showed that NFC was more beneficial than MTA in dental restorations.
Collapse
|
3
|
Ruolan W, Liangjiao C, Longquan S. The mTOR/ULK1 signaling pathway mediates the autophagy-promoting and osteogenic effects of dicalcium silicate nanoparticles. J Nanobiotechnology 2020; 18:119. [PMID: 32867795 PMCID: PMC7457372 DOI: 10.1186/s12951-020-00663-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
A novel bioactive inorganic material containing silicon, calcium and oxygen, calcium silicate (Ca2SiO4, C2S) with a CaO-SiO2 ingredient, has been identified as a potential candidate for artificial bone. Autophagy has an essential function in adult tissue homoeostasis and tumorigenesis. However, little is known about whether silicate nanoparticles (C2S NPs) promote osteoblastic differentiation by inducing autophagy. Here we investigated the effects of C2S NPs on bone marrow mesenchymal stem cell differentiation (BMSCs) in osteoblasts. Furthermore, we identified the osteogenic gene and protein expression in BMSCs treated with C2S NPs. We found that autophagy is important for the ability of C2S NPs to induce osteoblastic differentiation of BMSCs. Our results showed that treatment with C2S NPs upregulated the expression of BMP2, UNX2, and OSX in BMSCs, and significantly promoted the expression of LC3 and Beclin, while P62 (an autophagy substrate) was downregulated. C2S NP treatment could also enhance Alizarin red S dye (ARS), although alkaline phosphatase (ALP) activity was not significantly changed. However, all these effects could be partially reversed by 3-MA. We then detected potential signaling pathways involved in this biological effect and found that C2S NPs could activate autophagy by suppressing mTOR and facilitating ULK1 expression. Autophagy further activated β-catenin expression and promoted osteogenic differentiation. In conclusion, C2S NPs promote bone formation and osteogenic differentiation in BMSCs by activating autophagy. They achieve this effect by activating mTOR/ULK1, inducing autophagy, and subsequently triggering the WNT/β-catenin pathway to boost the differentiation and biomineralization of osteoblasts.
Collapse
Affiliation(s)
- Wang Ruolan
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Chen Liangjiao
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Shao Longquan
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Vera-Pérez B, Arribas MI, Vicente-Salar N, Reig JA, Roche E. DNA methylation profile of different clones of human adipose stem cells does not allow to predict their differentiation potential. J Histotechnol 2019; 42:183-192. [PMID: 31476985 DOI: 10.1080/01478885.2019.1655962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Human adipose stem cells can differentiate into various mesodermic lineages, including adipogenic, osteogenic, chondrogenic, myogenic and endothelial pathways. In addition, these cells types possess immunomodulatory properties, potentially useful for autoimmune and autoinflammatory diseases. However, single-cell expanded clones have shown that the cells can present a variety of differentiation potential, which may be partly due to epigenetic differences among them. The objective of this study was to assess if DNA methylation plays a role in the differentiation potential observed between different cell clones obtained from the same donor. To this end, the methylation profile of five clonal cell lines of human adipose stem cells obtained by liposuction from two donors was analyzed. Previous reports demonstrated that cell lines 1.7 and 1.22 from Donor 1 and 3.5 from Donor 3 were adipogenic-osteogenic, but not cell lines 1.10 and 3.10. The genes analyzed were neuronal, endothelial, myogenic, osteogenic, adipogenic, extracellular matrix, cell cycle, cytoskeleton and metabolic enzymes. All clones analyzed in this study displayed a similar pattern of methylation in most of the gene families: 85.5% were hypomethylated genes and 14.5% hypermethylated. In conclusion, the methylation pattern of the 1113 genes studied in this report was not a consistent tool to identify the differentiation potential of human adipose stem cells.
Collapse
Affiliation(s)
- Beatriz Vera-Pérez
- Biochemistry and Cell Therapy Unit, Institute of Bioengineering, University Miguel Hernandez, Elche (Alicante), Spain
| | - María I Arribas
- Biochemistry and Cell Therapy Unit, Institute of Bioengineering, University Miguel Hernandez, Elche (Alicante), Spain
| | - Nestor Vicente-Salar
- Biochemistry and Cell Therapy Unit, Institute of Bioengineering, University Miguel Hernandez, Elche (Alicante), Spain
| | - Juan A Reig
- Biochemistry and Cell Therapy Unit, Institute of Bioengineering, University Miguel Hernandez, Elche (Alicante), Spain
| | - Enrique Roche
- Biochemistry and Cell Therapy Unit, Institute of Bioengineering, University Miguel Hernandez, Elche (Alicante), Spain.,CIBERobn (Fisiopatología de la Obesidad y la Nutrición CB12/03/30038) Instituto de Salud Carlos III, Spain.,Department of Applied Biology-Nutrition, University Miguel Hernandez, Alicante Institute for Health and Biomedical Research (ISABIAL Foundation), Alicante, Spain
| |
Collapse
|
5
|
Costa BC, Guerreiro-Tanomaru JM, Bosso-Martelo R, Rodrigues EM, Bonetti-Filho I, Tanomaru-Filho M. Ytterbium Oxide as Radiopacifier of Calcium Silicate-Based Cements. Physicochemical and Biological Properties. Braz Dent J 2018; 29:452-458. [PMID: 30517443 DOI: 10.1590/0103-6440201802033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/17/2018] [Indexed: 11/22/2022] Open
Abstract
This study evaluated physicochemical properties, cytotoxicity and bioactivity of MTA Angelus (MTA), calcium silicate-based cement (CSC) and CSC with 30% Ytterbium oxide (CSC/Yb2O3). Setting time was evaluated using Gilmore needles. Compressive strength was evaluated in a mechanical machine. Radiopacity was evaluated using radiographs of materials and an aluminum scale. Solubility was evaluated after immersion in water. Cell viability was evaluated by means of MTT assay and neutral red staining, and the mineralization activity by using alkaline phosphatase activity and Alizarin Red staining. The data were submitted to ANOVA, Tukey and Bonferroni tests (5% significance). The bioactive potential was evaluated by scanning electron microscopy. The materials presented similar setting time. MTA showed the lowest compressive strength. MTA and CSC/Yb2O3 presented similar radiopacity. CSC/Yb2O3 showed low solubility. Saos-2 cell viability tests showed no cytotoxic effect, except to 1:1 dilution in NR assay which had lower cell viability when compared to the control. ALP at 1 and 7 days was similar to the control. MTA and CSC had greater ALP activity at 3 days when compared to control. All the materials present higher mineralized nodules when compared with the control. SEM analysis showed structures suggesting the presence of calcium phosphate on the surface of materials demonstrating bioactivity. Ytterbium oxide proved to be a properly radiopacifying agent for calcium silicate-based cement since it did not affected the physicochemical and biological properties besides preserving the bioactive potential of this material.
Collapse
Affiliation(s)
- Bernardo Cesar Costa
- Department of Restorative Dentistry, Araraquara Dental School, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| | | | - Roberta Bosso-Martelo
- Department of Clinical Dentistry, School of Dentistry, UFBA - Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Elisandra Márcia Rodrigues
- Department of Restorative Dentistry, Araraquara Dental School, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| | - Idomeo Bonetti-Filho
- Department of Restorative Dentistry, Araraquara Dental School, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| | - Mário Tanomaru-Filho
- Department of Restorative Dentistry, Araraquara Dental School, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| |
Collapse
|
6
|
Dicalcium Silicate Induced Proinflammatory Responses through TLR2-Mediated NF- κB and JNK Pathways in the Murine RAW 264.7 Macrophage Cell Line. Mediators Inflamm 2018; 2018:8167932. [PMID: 29853794 PMCID: PMC5954956 DOI: 10.1155/2018/8167932] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/08/2018] [Indexed: 11/21/2022] Open
Abstract
Proinflammatory responses are important aspects of the immune response to biomaterials, which may cause peri-implantitis and implant shedding. The purpose of this study was to test the cytotoxicity and proinflammatory effects of dicalcium silicate particles on RAW 264.7 macrophages and to investigate the proinflammatory response mechanism induced by C2S and tricalcium phosphate (TCP). C2S and TCP particles were characterized using scanning electron microscopy (SEM), energy spectrum analysis (EDS) and X-ray diffraction (XRD). Cytotoxicity and apoptosis assays with C2S and TCP in the murine RAW 264.7 cell line were tested using the cell counting kit-8 (CCK-8) assay and flow cytometry (FCM). The detection results showed that C2S and TCP particles had no obvious toxicity in RAW 264.7 cells and did not cause obvious apoptosis, although they both caused an oxidative stress response by producing ROS when the concentrations were at 100 μg/mL. C2S particles are likely to induce a proinflammatory response by inducing high TLR2, TNF-α mRNA, TNF-α proinflammatory cytokine, p-IκB, and p-JNK1 + JNK2 + JNK3 expression levels. When we added siRNA-TLR2-1, a significant reduction was observed. These findings support the theory that C2S particles induce proinflammatory responses through the TLR2-mediated NF-κB and JNK pathways in the murine RAW 264.7 macrophage cell line.
Collapse
|
7
|
Self-Setting Calcium Orthophosphate (CaPO4) Formulations. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-5975-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Zuleta F, Murciano A, Gehrke SA, Maté-Sánchez de Val JE, Calvo-Guirado JL, De Aza PN. A New Biphasic Dicalcium Silicate Bone Cement Implant. MATERIALS 2017; 10:ma10070758. [PMID: 28773119 PMCID: PMC5551801 DOI: 10.3390/ma10070758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 12/12/2022]
Abstract
This study aimed to investigate the processing parameters and biocompatibility of a novel biphasic dicalcium silicate (C2S) cement. Biphasic α´L + β-C2Sss was synthesized by solid-state processing, and was used as a raw material to prepare the cement. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid (SBF) and human adipose stem cell cultures. Two critical-sized defects of 6 mm Ø were created in 15 NZ tibias. A porous cement made of the high temperature forms of C2S, with a low phosphorous substitution level, was produced. An apatite-like layer covered the cement’s surface after soaking in SBF. The cell attachment test showed that α´L + β-C2Sss supported cells sticking and spreading after 24 h of culture. The cement paste (55.86 ± 0.23) obtained higher bone-to-implant contact (BIC) percentage values (better quality, closer contact) in the histomorphometric analysis, and defect closure was significant compared to the control group (plastic). The residual material volume of the porous cement was 35.42 ± 2.08% of the initial value. The highest BIC and bone formation percentages were obtained on day 60. These results suggest that the cement paste is advantageous for initial bone regeneration.
Collapse
Affiliation(s)
- Fausto Zuleta
- Escuela de Arquitectura y Diseño, Universidad Pontificia Bolivariana, Circular 1 N° 70-01, Bloque 10 Of 306, Medellín-Antioquia 050031, Colombia.
| | - Angel Murciano
- Departamento de Materiales, Óptica y Tecnologia Electrónica, Universidad Miguel Hernández, Avda. Universidad s/n, 03202-Elche, Alicante, Spain.
| | - Sergio A Gehrke
- Biotecnos Research Center, Rua Dr. Bonazo n° 57, Santa Maria (RS) 97015-001, Brazil.
| | - José E Maté-Sánchez de Val
- Cátedra Internacional de Investigación en Odontología, Universidad Católica San Antonio de Murcia, Avda. Jerónimos, 135, 30107 Guadalupe, Murcia, Spain.
| | - José L Calvo-Guirado
- Cátedra Internacional de Investigación en Odontología, Universidad Católica San Antonio de Murcia, Avda. Jerónimos, 135, 30107 Guadalupe, Murcia, Spain.
| | - Piedad N De Aza
- Instituto de Bioingenieria, Universidad Miguel Hernandez, Avda. Ferrocarril s/n, 03202-Elche, Alicante, Spain.
| |
Collapse
|
9
|
Liangjiao C, Ping Z, Ruoyu L, Yanli Z, Ting S, Yanjun L, Longquan S. Potential proinflammatory and osteogenic effects of dicalcium silicate particles in vitro. J Mech Behav Biomed Mater 2014; 44:10-22. [PMID: 25594366 DOI: 10.1016/j.jmbbm.2014.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Due to their biocompatibility and bioactivity, dicalcium silicate (C2S) and hydroxyapatite (HA) are used as coating materials for prosthetic orthopedic and dental implants or as bone substitute materials to fill bone defects. However, prostheses and bone substitutes can release particles that trigger an immune response in the recipient. The immunological effects of C2S particles have not yet been studied. OBJECTIVE The aim of this study was to determine the cytotoxic effects of C2S particles on primary human monocytes, a human monocyte cell line (THP-1) and an osteoblast-like cell line (MG-63). The proinflammatory effects of C2S particles on THP-1 were also detected. Moreover, the osteogenic effects of C2S and HA on MG-63 cells were investigated. METHODS Characterization of C2S and HA was performed using scanning electron microscopy (SEM), energy dispersive analysis (EDS), X-ray diffraction (XRD), Brunner-Emmett-Teller (BET) measurements and laser diffraction. The cytotoxic effect of C2S on primary human monocytes as well as THP-1 and MG-63 cells was measured using Trypan blue assays, Cell Counting Kit-8 (CCK-8) assays and flow cytometry to detect apoptosis. THP-1 human monocytes with or without lipopolysaccharide (LPS) stimulation were exposed to C2S and HA for 6 and 24h. Thereafter, the mRNA expression and protein concentrations of MMP-2, MMP-9, TIMP-2, TIMP-1 and TNF-α were evaluated using real-time PCR and ELISA, respectively. RANKL and OPG mRNA expression levels in MG-63 cells were examined using real-time PCR. RESULTS No significant cytotoxicity was recorded when cells were directly cultured with C2S/HA particles. After THP-1 cells were cultured with C2S/HA for 24h, MMP-2, MMP-9 and TNF-α expression increased, whereas TIMP-2 and TIMP-1 expression decreased. Compared with HA, C2S slightly increased MMP-9 expression and slightly decreased TIMP-1 expression. The MMP: TIMP ratio increased in the C2S and HA groups; however, HA significantly increased the MMP-9: TIMP-1 ratio compared with C2S. Compared with HA, C2S caused less TNF-α production. C2S/HA did not modify the expression of proinflammatory mediators in LPS-stimulated cells. Furthermore, C2S/HA significantly increased OPG expression and slightly increased RANKL expression in MG-63 cells. C2S and HA decreased the RANKL: OPG ratio. CONCLUSION Our in vitro data suggest that C2S is relatively safe when directly cultured with cells. In addition, C2S may exert proinflammatory effects; however, compared with HA, C2S had fewer proinflammatory effects on THP-1. C2S and HA did not alter the LPS-induced production of proinflammatory mediators and had similar osteogenic effects on MG-63 cells.
Collapse
Affiliation(s)
- Chen Liangjiao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhu Ping
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liu Ruoyu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhang Yanli
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sun Ting
- The Medical Centre of Stomatology, the 1st Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Liu Yanjun
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Shao Longquan
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|