1
|
Wu KY, Qian SY, Faucher A, Tran SD. Advancements in Hydrogels for Corneal Healing and Tissue Engineering. Gels 2024; 10:662. [PMID: 39451315 PMCID: PMC11507397 DOI: 10.3390/gels10100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Hydrogels have garnered significant attention for their versatile applications across various fields, including biomedical engineering. This review delves into the fundamentals of hydrogels, exploring their definition, properties, and classification. Hydrogels, as three-dimensional networks of crosslinked polymers, possess tunable properties such as biocompatibility, mechanical strength, and hydrophilicity, making them ideal for medical applications. Uniquely, this article offers original insights into the application of hydrogels specifically for corneal tissue engineering, bridging a gap in current research. The review further examines the anatomical and functional complexities of the cornea, highlighting the challenges associated with corneal pathologies and the current reliance on donor corneas for transplantation. Considering the global shortage of donor corneas, this review discusses the potential of hydrogel-based materials in corneal tissue engineering. Emphasis is placed on the synthesis processes, including physical and chemical crosslinking, and the integration of bioactive molecules. Stimuli-responsive hydrogels, which react to environmental triggers, are identified as promising tools for drug delivery and tissue repair. Additionally, clinical applications of hydrogels in corneal pathologies are explored, showcasing their efficacy in various trials. Finally, the review addresses the challenges of regulatory approval and the need for further research to fully realize the potential of hydrogels in corneal tissue engineering, offering a promising outlook for future developments in this field.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Shu Yu Qian
- Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Anne Faucher
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
2
|
Dilley JE, Everhart JS, Klitzman RG. Hyaluronic acid as an adjunct to microfracture in the treatment of osteochondral lesions of the talus: a systematic review of randomized controlled trials. BMC Musculoskelet Disord 2022; 23:313. [PMID: 35366851 PMCID: PMC8976295 DOI: 10.1186/s12891-022-05236-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Osteochondral lesions of the talus (OLT) are common after ankle trauma. Studies have shown that bioactive substances, such as hyaluronic acid (HA), alone, or in combination, with surgical treatment could improve cartilage regeneration and repair, but the effect of HA on patient reported outcomes is unclear. METHODS Literature searches were performed across four databases (PubMed, SPORTDiscus, Scopus, and The Cochrane Library) for randomized controlled trials in which at least one treatment arm involved use of HA as an adjunct to microfracture to treat patients with OLT. Primary outcomes included the American Orthopaedic Foot and Ankle Society scores (AOFAS), and the Visual Analog Scale (VAS) for pain. The level of evidence and methodological quality were evaluated using the Modified Coleman Methodology Score (MCMS). RESULTS Three randomized studies were eligible for review with a total of 132 patients (35, 40, 57 patients, respectively) and follow-up ranged from 10.5 to 25 months. Utilization of HA at the time of microfracture resulted in greater improvement in AOFAS scores compared to microfracture alone. The pooled effect size was moderate (Standardized Mean Difference [SMD] 0.45, 95% Confidence Interval [CI] 0.06, 0.84; P = .02) and between-study heterogeneity was low (I-squared = 0%). Utilization of HA during microfracture also led to greater improvement in VAS-pain scores compared to microfracture alone. The pooled effect size was very large (SMD -3.86, 95% CI -4.75, - 2.97; P < .001) and heterogeneity was moderate (I-squared = 69%). CONCLUSION Hyaluronic acid injection as an adjunct to arthroscopic MF in OLT provides clinically important improvements in function and pain at short-term follow-up compared to MF alone. Future longer-term follow-up studies are warranted to investigate the durability of MF with HA for treatment of OLT.
Collapse
Affiliation(s)
- Julian E Dilley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Joshua S Everhart
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert G Klitzman
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
3
|
David MA, Reiter AJ, Dunham CL, Castile RM, Abraham JA, Iannucci LE, Shah ID, Havlioglu N, Chamberlain AM, Lake SP. Pleiotropic Effects of Simvastatin and Losartan in Preclinical Models of Post-Traumatic Elbow Contracture. Front Bioeng Biotechnol 2022; 10:803403. [PMID: 35265595 PMCID: PMC8899197 DOI: 10.3389/fbioe.2022.803403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/04/2022] [Indexed: 02/02/2023] Open
Abstract
Elbow trauma can lead to post-traumatic joint contracture (PTJC), which is characterized by loss of motion associated with capsule/ligament fibrosis and cartilage damage. Unfortunately, current therapies are often unsuccessful or cause complications. This study aimed to determine the effects of prophylactically administered simvastatin (SV) and losartan (LS) in two preclinical models of elbow PTJC: an in vivo elbow-specific rat injury model and an in vitro collagen gel contraction assay. The in vivo elbow rat (n = 3-10/group) injury model evaluated the effects of orally administered SV and LS at two dosing strategies [i.e., low dose/high frequency/short duration (D1) vs. high dose/low frequency/long duration (D2)] on post-mortem elbow range of motion (via biomechanical testing) as well as capsule fibrosis and cartilage damage (via histopathology). The in vitro gel contraction assay coupled with live/dead staining (n = 3-19/group) evaluated the effects of SV and LS at various concentrations (i.e., 1, 10, 100 µM) and durations (i.e., continuous, short, or delayed) on the contractibility and viability of fibroblasts/myofibroblasts [i.e., NIH3T3 fibroblasts with endogenous transforming growth factor-beta 1 (TGFβ1)]. In vivo, no drug strategy prevented elbow contracture biomechanically. Histologically, only SV-D2 modestly reduced capsule fibrosis but maintained elevated cellularity and tissue hypertrophy, and both SV strategies lessened cartilage damage. SV modest benefits were localized to the anterior region, not the posterior, of the joint. Neither LS strategy had meaningful benefits in capsule nor cartilage. In vitro, irrespective of the presence of TGFβ1, SV (≥10 μM) prevented gel contraction partly by decreasing cell viability (100 μM). In contrast, LS did not prevent gel contraction or affect cell viability. This study demonstrates that SV, but not LS, might be suitable prophylactic drug therapy in two preclinical models of elbow PTJC. Results provide initial insight to guide future preclinical studies aimed at preventing or mitigating elbow PTJC.
Collapse
Affiliation(s)
- Michael A. David
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - Alex J. Reiter
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - Chelsey L. Dunham
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Ryan M. Castile
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - James A. Abraham
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - Leanne E. Iannucci
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Ishani D. Shah
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - Necat Havlioglu
- Department of Pathology, John Cochran VA Medical Center, St. Louis, MO, United States
| | - Aaron M. Chamberlain
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, United States
| | - Spencer P. Lake
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
4
|
Rana MM, De la Hoz Siegler H. Tuning the Properties of PNIPAm-Based Hydrogel Scaffolds for Cartilage Tissue Engineering. Polymers (Basel) 2021; 13:3154. [PMID: 34578055 PMCID: PMC8467289 DOI: 10.3390/polym13183154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAm) is a three-dimensional (3D) crosslinked polymer that can interact with human cells and play an important role in the development of tissue morphogenesis in both in vitro and in vivo conditions. PNIPAm-based scaffolds possess many desirable structural and physical properties required for tissue regeneration, but insufficient mechanical strength, biocompatibility, and biomimicry for tissue development remain obstacles for their application in tissue engineering. The structural integrity and physical properties of the hydrogels depend on the crosslinks formed between polymer chains during synthesis. A variety of design variables including crosslinker content, the combination of natural and synthetic polymers, and solvent type have been explored over the past decade to develop PNIPAm-based scaffolds with optimized properties suitable for tissue engineering applications. These design parameters have been implemented to provide hydrogel scaffolds with dynamic and spatially patterned cues that mimic the biological environment and guide the required cellular functions for cartilage tissue regeneration. The current advances on tuning the properties of PNIPAm-based scaffolds were searched for on Google Scholar, PubMed, and Web of Science. This review provides a comprehensive overview of the scaffolding properties of PNIPAm-based hydrogels and the effects of synthesis-solvent and crosslinking density on tuning these properties. Finally, the challenges and perspectives of considering these two design variables for developing PNIPAm-based scaffolds are outlined.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Hector De la Hoz Siegler
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
5
|
Bao W, Li M, Yang Y, Wan Y, Wang X, Bi N, Li C. Advancements and Frontiers in the High Performance of Natural Hydrogels for Cartilage Tissue Engineering. Front Chem 2020; 8:53. [PMID: 32117879 PMCID: PMC7028759 DOI: 10.3389/fchem.2020.00053] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Cartilage injury originating from trauma or osteoarthritis is a common joint disease that can bring about an increasing social and economic burden in modern society. On account of its avascular, neural, and lymphatic characteristics, the poor migration ability of chondrocytes, and a low number of progenitor cells, the self-healing ability of cartilage defects has been significantly limited. Natural hydrogels, occurring abundantly with characteristics such as high water absorption, biodegradation, adjustable porosity, and biocompatibility like that of the natural extracellular matrix (ECM), have been developed into one of the most suitable scaffold biomaterials for the regeneration of cartilage in material science and tissue engineering. Notably, natural hydrogels derived from sources such as animal or human cadaver tissues possess the bionic mechanical behaviors of physiological cartilage that are required for usage as articular cartilage substitutes, by which the enhanced chondrogenic phenotype ability may be achieved by facilely embedding living cells, controlling degradation profiles, and releasing stimulatory growth factors. Hence, we summarize an overview of strategies and developments of the various kinds and functions of natural hydrogels for cartilage tissue engineering in this review. The main concepts and recent essential research found that great challenges like vascularity, clinically relevant size, and mechanical performances were still difficult to overcome because the current limitations of technologies need to be severely addressed in practical settings, particularly in unpredictable preclinical trials and during future forays into cartilage regeneration using natural hydrogel scaffolds with high mechanical properties. Therefore, the grand aim of this current review is to underpin the importance of preparation, modification, and application for the high performance of natural hydrogels for cartilage tissue engineering, which has been achieved by presenting a promising avenue in various fields and postulating real-world respective potentials.
Collapse
Affiliation(s)
- Wuren Bao
- School of Nursing, Inner Mongolia University for Nationalities, Tongliao, China
| | - Menglu Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yanyu Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- College of Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Yi Wan
- Orthopaedic Department, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Na Bi
- Orthopaedic Department, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunlin Li
- Orthopaedic Department, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Ogawa Y, Takahashi N, Takemoto T, Nishiume T, Suzuki M, Ishiguro N, Kojima T. Hyaluronan promotes TRPV4-induced chondrogenesis in ATDC5 cells. PLoS One 2019; 14:e0219492. [PMID: 31393869 PMCID: PMC6687147 DOI: 10.1371/journal.pone.0219492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Hyaluronan (HA) is an extracellular matrix glycosaminoglycan essential for the homeostasis of cartilage-related tissues. Intracellular adhesion molecule-1 (ICAM-1) and CD44 have been identified as receptors for HA. Recently, transient receptor potential vanilloid 4 (TRPV4) has emerged as a potential research target in several areas of physiology. TRPV4 is a Ca2+-permeable, non-selective cation channel that appears to have mechanosensory or osmosensory roles in several musculoskeletal tissues. HA and TRPV4 play key roles in chondrogenesis; however, it has remained unclear whether they have interactive effects on chondrogenesis and, if so, how do they interact with each other? This study investigated the relationship between HA, its receptors ICAM-1 and CD44, and TRPV4 in the chondrogenic pathway using the ATDC5 cell line. It was found that the presence of HA is required for TRPV4-induced chondrogenesis. Loss of HA suppressed TRPV4-induced expression of the chondrogenic markers, SOX9 and Aggrecan. Moreover, HA affects TRPV4-induced chondrogenic development via each of ICAM-1 and CD44 partially. In conclusion, for the first time, the existence of an interaction between HA, its receptor ICAM-1 and CD44, and TRPV4-activity in chondrogenesis in the ATDC5 cell line was reported. TRPV4 is known to function as a mechanosensory channel in several musculoskeletal tissues. Therefore, findings of this study may suggest the existence of a molecular mechanism that underlies the interactive effects of HA and mechanical loading on joint chondrogenesis.
Collapse
Affiliation(s)
- Yoshikazu Ogawa
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Tsurumai, Showa-ku, Nagoya, Japan
| | - Nobunori Takahashi
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Tsurumai, Showa-ku, Nagoya, Japan
- * E-mail:
| | - Toki Takemoto
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Tsurumai, Showa-ku, Nagoya, Japan
| | - Tsuyoshi Nishiume
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Tsurumai, Showa-ku, Nagoya, Japan
| | - Mochihito Suzuki
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Tsurumai, Showa-ku, Nagoya, Japan
| | - Naoki Ishiguro
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Tsurumai, Showa-ku, Nagoya, Japan
| | - Toshihisa Kojima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Tsurumai, Showa-ku, Nagoya, Japan
| |
Collapse
|
7
|
Li X, Sun Q, Li Q, Kawazoe N, Chen G. Functional Hydrogels With Tunable Structures and Properties for Tissue Engineering Applications. Front Chem 2018; 6:499. [PMID: 30406081 PMCID: PMC6204355 DOI: 10.3389/fchem.2018.00499] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/01/2018] [Indexed: 11/13/2022] Open
Abstract
Tissue engineering (TE) has been used as an attractive and efficient process to restore the original tissue structures and functions through the combination of biodegradable scaffolds, seeded cells, and biological factors. As a unique type of scaffolds, hydrogels have been frequently used for TE because of their similar 3D structures to the native extracellular matrix (ECM), as well as their tunable biochemical and biophysical properties to control cell functions such as cell adhesion, migration, proliferation, and differentiation. Various types of hydrogels have been prepared from naturally derived biomaterials, synthetic polymers, or their combination, showing their promise in TE. This review summarizes the very recent progress of hydrogels used for TE applications. The strategies for tuning biophysical and biochemical properties, and structures of hydrogels are first introduced. Their influences on cell functions and promotive effects on tissue regeneration are then highlighted.
Collapse
Affiliation(s)
- Xiaomeng Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou, China
| | - Qingqing Sun
- Center for Functional Sensor and Actuator, National Institute for Materials Science, Tsukuba, Japan
| | - Qian Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou, China
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|
8
|
Sánchez-Téllez DA, Téllez-Jurado L, Rodríguez-Lorenzo LM. Hydrogels for Cartilage Regeneration, from Polysaccharides to Hybrids. Polymers (Basel) 2017; 9:E671. [PMID: 30965974 PMCID: PMC6418920 DOI: 10.3390/polym9120671] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
The aims of this paper are: (1) to review the current state of the art in the field of cartilage substitution and regeneration; (2) to examine the patented biomaterials being used in preclinical and clinical stages; (3) to explore the potential of polymeric hydrogels for these applications and the reasons that hinder their clinical success. The studies about hydrogels used as potential biomaterials selected for this review are divided into the two major trends in tissue engineering: (1) the use of cell-free biomaterials; and (2) the use of cell seeded biomaterials. Preparation techniques and resulting hydrogel properties are also reviewed. More recent proposals, based on the combination of different polymers and the hybridization process to improve the properties of these materials, are also reviewed. The combination of elements such as scaffolds (cellular solids), matrices (hydrogel-based), growth factors and mechanical stimuli is needed to optimize properties of the required materials in order to facilitate tissue formation, cartilage regeneration and final clinical application. Polymer combinations and hybrids are the most promising materials for this application. Hybrid scaffolds may maximize cell growth and local tissue integration by forming cartilage-like tissue with biomimetic features.
Collapse
Affiliation(s)
- Daniela Anahí Sánchez-Téllez
- Instituto Politécnico Nacional-ESIQIE, Depto. Ing. en Metalurgia y Materiales, UPALM-Zacatenco, Mexico City 07738, Mexico.
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
| | - Lucía Téllez-Jurado
- Instituto Politécnico Nacional-ESIQIE, Depto. Ing. en Metalurgia y Materiales, UPALM-Zacatenco, Mexico City 07738, Mexico.
| | - Luís María Rodríguez-Lorenzo
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
- Department Polymeric Nanomaterials and Biomaterials, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
9
|
Hyaluronic acid facilitates chondrogenesis and matrix deposition of human adipose derived mesenchymal stem cells and human chondrocytes co-cultures. Acta Biomater 2017; 52:130-144. [PMID: 28131943 DOI: 10.1016/j.actbio.2017.01.064] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/08/2017] [Accepted: 01/23/2017] [Indexed: 01/14/2023]
Abstract
Clinical success on cartilage regeneration could be achieved by using available biomaterials and cell-based approaches. In this study, we have developed a composite gel based on collagen/hyaluronic acid (Coll-HA) as ideal, physiologically representative 3D support for in vitro chondrogenesis of human adipose-derived mesenchymal stem cells (hAMSCs) co-cultured with human articular chondrocytes (hAC). The incorporation of hyaluronic acid (HA) attempted to provide an additional stimulus to the hAMSCs for chondrogenesis and extracellular matrix deposition. Coll-HA gels were fabricated by directly mixing different amounts of HA (0-5%) into collagen solution before gelation. hACs and hAMSCs were co-cultured at different ratios from 100% to 0% in steps of 25%. Thus, five different co-culture groups were tested in the various Coll-HA 3D matrices. HA greatly impacted the cell viability and proliferation as well as the mechanical properties of the Coll-HA gel. The effective Young's modulus changed from 5.8 to 9.0kPa with increasing concentrations of HA in the gel. In addition, significantly higher amounts of glycosaminoglycan (GAG) were detected that seemed to be dependent on HA content. The highest HA concentration used (5%) resulted in the lowest Collagen type X (Col10) expression for most of the cell culture groups. Unexpectedly, culturing in these gels was also associated with decreased SOX9 and Collagen type II (Col2) expression, while Collagen type III (Col3) and metalloproteinase 13 notably increased. By using 1% HA, a positive effect on SOX9 expression was observed in the co-culture groups. In addition, a significant increase in GAGs production was also detected. Regarding co-culturing, the group with 25% hAMSCs+75% hACs was the most chondrogenic one considering SOX9 and Col2 expression as well as GAGs production. This group showed negligible Col10 expression after 35days of culture independently of the gel used. It also featured the highest effective Young's modulus (9.9kPa) when cultivated in the 1% HA matrix. Concerning the level of dissolved oxygen in situ, the groups with a higher amount of hAMSCs showed lower oxygen levels (40-58% O2) compared to hACs (63-74% O2). This might be attributed to the higher cellular metabolism and proliferation rate of the hAMSCs. Interestingly, lower oxygen was detected in the HA-containing gels when compared to plain collagen. This may contribute to the better chondrogenesis observed in these groups. Altogether, our results indicated that HA may favor chondrogenesis, but its effect highly depends on the concentration used. Additionally, co-culture of hACs with hAMSCs also favors chondrogenesis and especially increases extracellular matrix production and decreases hypertrophy. STATEMENT OF SIGNIFICANCE In the clinical situation, large cartilage defects can be treated with MACT. However, this is a two-stage procedure, which increases the risk for the patient. Moreover, culturing chondrocytes leads to dedifferentiation. The matrix used for MACT is a collagen-based scaffold. In this study, it was demonstrated that hyaluronic acid, a natural component of the extracellular matrix, supplementation to a collagen hydrogel stimulates chondrogenic differentiation in a dose dependent manner. 1% HA showed the best overall results. Furthermore, exchanging 25% of human articular chondrocytes with adipose-derived mesenchymal stem cells didn't change the chondrogenic potential, but reduced going in unwanted pathways and improved biomechanical properties. This could translate to a one-step procedure and shows the potential of inducing differentiation by natural biomaterials.
Collapse
|
10
|
Abstract
Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks), new techniques to process hydrogels (e.g. 3D printing) and better incorporation of biological signals (e.g. controlled release). This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation.
Collapse
Affiliation(s)
| | | | - J A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104,
| |
Collapse
|
11
|
Gabusi E, Paolella F, Manferdini C, Gambari L, Schiavinato A, Lisignoli G. Age-independent effects of hyaluronan amide derivative and growth hormone on human osteoarthritic chondrocytes. Connect Tissue Res 2015; 56:440-51. [PMID: 26075645 DOI: 10.3109/03008207.2015.1047928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM Increased age is the most prominent risk factor for the initiation and progression of osteoarthritis (OA). The effects of human growth hormone (hGH) combined or not with hyaluronan amide derivative (HAD) were evaluated on human OA chondrocytes, to define their biological action and potentiality in OA treatment. MATERIAL AND METHODS Cell viability, metabolic activity, gene expression and factors released were tested at different time points on chondrocytes treated with different concentrations of hGH (0.01-10 μg/ml) alone or in combination with HAD (1 mg/ml). RESULTS We found that OA chondrocytes express GH receptor and that the different doses of hGH tested did not affect cell viability, metabolic activity or the expression of collagen type 2, 1, or 10 nor did it induce the release of IGF-1 or FGF-2. Conversely, hGH treatment increased the expression of hyaluronan receptor CD44. HAD combined with hGH reduced metabolic activity, IL6 release and gene expression, but not the suppressor of cytokine signaling 2 (SOCS2), which was significantly induced and translocated into the nucleus. The parameters analyzed, independently of the treatments used proportionally decreased with increasing age of the patients. CONCLUSIONS hGH only induced CD44 receptor on OA chondrocytes but did not affect other parameters, such as chondrocytic gene markers or IGF-1 or FGF-2 release. HAD reduced all the effects induced by hGH partially through a significant induction of SOCS2. These data show that GH or HAD treatment does not influence the response of the OA chondrocytes, thus the modulation of cellular response is age-independent.
Collapse
Affiliation(s)
- Elena Gabusi
- a Laboratorio RAMSES , Istituto Ortopedico Rizzoli , Bologna , Italy
| | | | - Cristina Manferdini
- a Laboratorio RAMSES , Istituto Ortopedico Rizzoli , Bologna , Italy .,b SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale , Istituto Ortopedico Rizzoli , Bologna , Italy , and
| | - Laura Gambari
- b SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale , Istituto Ortopedico Rizzoli , Bologna , Italy , and
| | | | - Gina Lisignoli
- a Laboratorio RAMSES , Istituto Ortopedico Rizzoli , Bologna , Italy .,b SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale , Istituto Ortopedico Rizzoli , Bologna , Italy , and
| |
Collapse
|
12
|
Vilela CA, Correia C, Oliveira JM, Sousa RA, Espregueira-Mendes J, Reis RL. Cartilage Repair Using Hydrogels: A Critical Review of in Vivo Experimental Designs. ACS Biomater Sci Eng 2015; 1:726-739. [DOI: 10.1021/acsbiomaterials.5b00245] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- C. A. Vilela
- 3B’s
Research Group, University of Minho, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Life
and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- Orthopaedic
Department, Centro Hospitalar do Alto Ave, Guimarães, Portugal
| | - C. Correia
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| | - J. M. Oliveira
- 3B’s
Research Group, University of Minho, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - R. A. Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| | - J. Espregueira-Mendes
- 3B’s
Research Group, University of Minho, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Life
and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- Clínica
do Dragão, Espregueira-Mendes Sports Centre, Porto, Portugal
| | - R. L. Reis
- 3B’s
Research Group, University of Minho, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| |
Collapse
|