1
|
Li Y, Stone W, Schemitsch EH, Zalzal P, Papini M, Waldman SD, Towler MR. Antibacterial and osteo-stimulatory effects of a borate-based glass series doped with strontium ions. J Biomater Appl 2016; 31:674-683. [PMID: 27671104 DOI: 10.1177/0885328216672088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work considered the effect of both increasing additions of Strontium (Sr2+) and incubation time on solubility and both antibacterial and osteo-stimulatory effects of a series of glasses based on the B2O3-P2O5-CaCO3-Na2CO3-TiO2-SrCO3 series. The amorphous nature of all the glasses was confirmed by X-ray diffraction. Discs of each glass were immersed in de-ionized water for 1, 7 and 30 days, and the water extracts were used for ion release profiles, pH measurements and cytotoxicity testing. Atomic absorption spectroscopy was employed to detect the release of Na+, Ca2+ and Sr2+ ions from the glasses with respect to maturation, which indicated that the addition of Sr2+ retarded solubility of the glass series. This effect was also confirmed by weight loss analysis through comparing the initial weight of glass discs before and after periods of incubation. The incorporation of Sr2+ in the glasses did not influence the pH of the water extracts when the glasses were stored for up to 30 days. Cytotoxicity testing with an osteoblastic cell line (MC3T3-E1) indicated that glasses with the higher (20 mol% and 25 mol%) Sr2+ incorporation promoted proliferation of osteoblast cells, while the glasses with lower Sr2+ contents inhibited cell growth. The glass series, except for Ly-B5 (which contained the highest Sr2+ incorporation; 25 mol%), were bacteriostatic against S. aureus in the short term (1-7 days) as a result of the dissolution products released.
Collapse
Affiliation(s)
- Yiming Li
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, ON, Canada Keenan Research Centre, St. Michael's Hospital, Toronto, ON, Canada
| | - Wendy Stone
- Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | | | - Paul Zalzal
- Oakville Memorial Hospital, Oakville, ON, Canada
| | - Marcello Papini
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, ON, Canada
| | - Stephen D Waldman
- Chemistry and Biology, Ryerson University, Toronto, ON, Canada Chemical Engineering, Ryerson University, Toronto, ON, Canada
| | - Mark R Towler
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, ON, Canada Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
2
|
The role of poly(acrylic acid) in conventional glass polyalkenoate cements. JOURNAL OF POLYMER ENGINEERING 2016. [DOI: 10.1515/polyeng-2015-0079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Glass polyalkenoate cements (GPCs) have been used in dentistry for over 40 years. These novel bioactive materials are the result of a reaction between a finely ground glass (base) and a polymer (acid), usually poly(acrylic acid) (PAA), in the presence of water. This article reviews the types of PAA used as reagents (including how they vary by molar mass, molecular weight, concentration, polydispersity and content) and the way that they control the properties of the conventional GPCs (CGPCs) formulated from them. The article also considers the effect of PAA on the clinical performance of CGPCs, including biocompatibility, rheological and mechanical properties, adhesion, ion release, acid erosion and clinical durability. The review has critically evaluated the literature and clarified the role that the polyacid component of CGPCs plays in setting and maturation. This review will lead to an improved understanding of the chemistry and properties of the PAA phase which will lead to further innovation in the glass-based cements field.
Collapse
|