1
|
Goranov V. Biomaterials functionalized with magnetic nanoparticles for tissue engineering: Between advantages and challenges. BIOMATERIALS AND BIOSYSTEMS 2024; 15:100100. [PMID: 39297073 PMCID: PMC11409007 DOI: 10.1016/j.bbiosy.2024.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
The integration of magnetic nanoparticles (MNPs) into biomaterials offers exciting opportunities for tissue engineering as they enable better control over cell guidance, release of bioactive factors and tissue maturation. Despite their potential, challenges such as the heterogeneity of MNPs, their cytotoxicity and the need for precise control of MNP`s properties hinder their widespread application. Overcoming these challenges will require new interdisciplinary efforts and technological advances, including the development of mathematical tools and additional elaborations to ensure the biocompatibility of MNPs.
Collapse
Affiliation(s)
- V Goranov
- BioDevice Systems s.r.o., Bulharska 996/20, Praha 10, Czech Republic
| |
Collapse
|
2
|
Rahimnejad M, Nasrollahi Boroujeni N, Jahangiri S, Rabiee N, Rabiee M, Makvandi P, Akhavan O, Varma RS. Prevascularized Micro-/Nano-Sized Spheroid/Bead Aggregates for Vascular Tissue Engineering. NANO-MICRO LETTERS 2021; 13:182. [PMID: 34409511 PMCID: PMC8374027 DOI: 10.1007/s40820-021-00697-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/13/2021] [Indexed: 05/02/2023]
Abstract
Efficient strategies to promote microvascularization in vascular tissue engineering, a central priority in regenerative medicine, are still scarce; nano- and micro-sized aggregates and spheres or beads harboring primitive microvascular beds are promising methods in vascular tissue engineering. Capillaries are the smallest type and in numerous blood vessels, which are distributed densely in cardiovascular system. To mimic this microvascular network, specific cell components and proangiogenic factors are required. Herein, advanced biofabrication methods in microvascular engineering, including extrusion-based and droplet-based bioprinting, Kenzan, and biogripper approaches, are deliberated with emphasis on the newest works in prevascular nano- and micro-sized aggregates and microspheres/microbeads.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, School of Medicine, Université de Montréal, Montreal, Canada
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montreal, Canada
| | | | - Sepideh Jahangiri
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montreal, Canada
- Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interfaces, Istituto Italiano Di Tecnologia, viale Rinaldo Piaggio 34, 56 025, Pontedera, Pisa, Italy
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Malektaj H, Imani R, Siadati MH. Study of injectable PNIPAAm hydrogels containing niosomal angiogenetic drug delivery system for potential cardiac tissue regeneration. Biomed Mater 2021; 16. [PMID: 33482656 DOI: 10.1088/1748-605x/abdef8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Nowadays, heart disease, especially myocardial infarction, is one of the most astoundingly unfortunate causes of mortality in the world. That is why special attention has been paid toward tissue engineering techniques for curing and regeneration of heart tissue. In this study, poly(N-isopropyl acrylamide) (PNIPAAm), a temperature-sensitive injectable hydrogel, was selected as a minimally invasive scaffold to accommodate, carry, and release of niosomal rosuvastatin to the inflicted area for inducing angiogenesis and thus accelerating the healing process. The characteristics of PNIPAAm were studied by scanning electron microscopy, rheology tests, and Fourier transform infrared spectroscopy. The properties of the niosomal rosuvastatin release system, including particle size distribution, zeta potential, encapsulation efficiency (EE), and drug release, were also studied. The results showed that niosomes (358 nm) had a drug EE of 78% and a loading capacity of 53%. The drug was sustainably released from the system up to about 54% in 5 d. Cellular studies showed no toxicity to the endothelial cell lines, and the niosomal drug with a concentration of 7.5 nM enhanced cell proliferation, and cell migration increased from 72% to 90% compared to the control sample. Therefore, the controlled-release of niosomal rosuvastatin enhanced angiogenesis in a dose-dependent manner. Taken together, these advantages suggest that PNIPAAm-based niosomal hydrogel provides a promising candidate as an angiogentic injectable scaffold for potential cardiac tissue regeneration.
Collapse
Affiliation(s)
- Haniyeh Malektaj
- Materials Science and Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - M Hossein Siadati
- Materials Science and Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
4
|
Mylkie K, Nowak P, Rybczynski P, Ziegler-Borowska M. Polymer-Coated Magnetite Nanoparticles for Protein Immobilization. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E248. [PMID: 33419055 PMCID: PMC7825442 DOI: 10.3390/ma14020248] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022]
Abstract
Since their discovery, magnetic nanoparticles (MNPs) have become materials with great potential, especially considering the applications of biomedical sciences. A series of works on the preparation, characterization, and application of MNPs has shown that the biological activity of such materials depends on their size, shape, core, and shell nature. Some of the most commonly used MNPs are those based on a magnetite core. On the other hand, synthetic biopolymers are used as a protective surface coating for these nanoparticles. This review describes the advances in the field of polymer-coated MNPs for protein immobilization over the past decade. General methods of MNP preparation and protein immobilization are presented. The most extensive section of this article discusses the latest work on the use of polymer-coated MNPs for the physical and chemical immobilization of three types of proteins: enzymes, antibodies, and serum proteins. Where possible, the effectiveness of the immobilization and the activity and use of the immobilized protein are reported. Finally, the information available in the peer-reviewed literature and the application perspectives for the MNP-immobilized protein systems are summarized as well.
Collapse
Affiliation(s)
| | | | | | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.M.); (P.N.); (P.R.)
| |
Collapse
|
5
|
Ganguly S, Margel S. Review: Remotely controlled magneto-regulation of therapeutics from magnetoelastic gel matrices. Biotechnol Adv 2020; 44:107611. [PMID: 32818552 DOI: 10.1016/j.biotechadv.2020.107611] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/14/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
|
6
|
Walker M, Will I, Pratt A, Chechik V, Genever P, Ungar D. Magnetically Triggered Release of Entrapped Bioactive Proteins from Thermally Responsive Polymer-Coated Iron Oxide Nanoparticles for Stem-Cell Proliferation. ACS APPLIED NANO MATERIALS 2020; 3:5008-5013. [PMID: 32626842 PMCID: PMC7325428 DOI: 10.1021/acsanm.0c01167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 05/05/2023]
Abstract
Nanoparticles could conceal bioactive proteins during therapeutic delivery, avoiding side effects. Superparamagnetic iron oxide nanoparticles (SPIONs) coated with a temperature-sensitive polymer were tested for protein release. We show that coated SPIONs can entrap test proteins and release them in a temperature-controlled manner in a biological system. Magnetically heating SPIONs triggered protein release at bulk solution temperatures below the polymer transition. The entrapped growth factor Wnt3a was inactive until magnetically triggered release, upon which it could increase mesenchymal stem cell proliferation. Once the polymer transition will be chemically adjusted above body temperature, this system could be used for targeted cell stimulation in model animals and humans.
Collapse
Affiliation(s)
- Matthew Walker
- Department
of Biology, University of York, York YO10 5DD, U.K.
| | - Iain Will
- Department
of Electronic Engineering, University of
York, York YO10 5DD, U.K.
| | - Andrew Pratt
- Department
of Physics, University of York, York YO10 5DD, U.K.
- (A.P.)
| | - Victor Chechik
- Department
of Chemistry, University of York, York YO10 5DD, U.K.
- (V.C.)
| | - Paul Genever
- Department
of Biology, University of York, York YO10 5DD, U.K.
- (P.G.)
| | - Daniel Ungar
- Department
of Biology, University of York, York YO10 5DD, U.K.
- (D.U.)
| |
Collapse
|
7
|
Hybrid Nanostructured Magnetite Nanoparticles: From Bio-Detection and Theragnostics to Regenerative Medicine. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6010004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanotechnology offers the possibility of operating on the same scale length at which biological processes occur, allowing to interfere, manipulate or study cellular events in disease or healthy conditions. The development of hybrid nanostructured materials with a high degree of chemical control and complex engineered surface including biological targeting moieties, allows to specifically bind to a single type of molecule for specific detection, signaling or inactivation processes. Magnetite nanostructures with designed composition and properties are the ones that gather most of the designs as theragnostic agents for their versatility, biocompatibility, facile production and good magnetic performance for remote in vitro and in vivo for biomedical applications. Their superparamagnetic behavior below a critical size of 30 nm has allowed the development of magnetic resonance imaging contrast agents or magnetic hyperthermia nanoprobes approved for clinical uses, establishing an inflection point in the field of magnetite based theragnostic agents.
Collapse
|
8
|
Lin SY. Thermoresponsive gating membranes embedded with liquid crystal(s) for pulsatile transdermal drug delivery: An overview and perspectives. J Control Release 2019; 319:450-474. [PMID: 31901369 DOI: 10.1016/j.jconrel.2019.12.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 01/08/2023]
Abstract
Due to the circadian rhythm regulation of almost every biological process in the human body, physiological and biochemical conditions vary considerably over the course of a 24-h period. Thus, optimal drug delivery and therapy should be effectively controlled to achieve the desired therapeutic plasma concentrations and therapeutic drug responses at the required time according to chronopharmacological concepts, rather than continuous maintenance of constant drug concentrations for an extended time period. For many drugs, it is not always necessary to constantly deliver a drug into the human body under disease conditions due to rhythmic variations. Pulsatile drug delivery systems (PDDSs) have been receiving more attention in pharmaceutical development by providing a predetermined lag period, followed by a fast or rate-controlled drug release after application. PDDSs are characterized by a programmed drug release, which may release a drug at repeatable pulses to match the biological and clinical needs of a given disease therapy. This review article focuses on thermoresponsive gating membranes embedded with liquid crystals (LCs) for transdermal drug delivery using PDDS technology. In addition, the principal rationale and the advanced approaches for the use of PDDSs, the marketed products of chronotherapeutic DDSs with pulsatile function designed by various PDDS technologies, pulsatile drug delivery designed with thermoresponsive polymers, challenges and opportunities of transdermal drug delivery, and novel approaches of LC systems for drug delivery are reviewed and discussed. A brief overview of all academic research articles concerning single LC- or binary LC-embedded thermoresponsive membranes with a switchable on-off permeation function through topical application by an external temperature control, which may modulate the dosing interval and administration time according to the therapeutic needs of the human body, is also compiled and presented. In the near future, since thermal-based approaches have become a well-accepted method to enhance transdermal delivery of different water-soluble drugs and macromolecules, a combination of the thermal-assisted approach with thermoresponsive LCs membranes will have the potential to improve PDDS applications but still poses a great challenge.
Collapse
Affiliation(s)
- Shan-Yang Lin
- Laboratory of Pharmaceutics and Biopharmaceutics, Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, No.306, Yuanpei Street, Hsin Chu 30015, Taiwan.
| |
Collapse
|
9
|
Tao C, Lina X, Changxuan W, Cong L, Xiaolan Y, Tao H, Hong A. Orthogonal test design for the optimization of superparamagnetic chitosan plasmid gelatin microspheres that promote vascularization of artificial bone. J Biomed Mater Res B Appl Biomater 2019; 108:1439-1449. [PMID: 31605570 PMCID: PMC7187448 DOI: 10.1002/jbm.b.34491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/06/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022]
Abstract
The optimal conditions for the preparation of superparamagnetic chitosan plasmid (pReceiver‐M29‐VEGF165/DH5a) gelatin microspheres (SPCPGMs) were determined. Then, the performance of the SPCPGMs during neovascularization was evaluated in vivo. The SPCPGMs were prepared through a cross‐linking curing method and then filled into the hollow scaffold of an artificial bone. Neovascularization at the bone defect position was histologically examined in samples collected 2, 4, 6, and 8 weeks after the operation. The cellular magnetofection rate of superparamagnetic chitosan nanoparticles/plasmid (pReceiver‐M29‐VEGF165/DH5a) complexes reached 1–3% under static magnetic field (SMF). Meanwhile, the optimal conditions for SPCPGM fabrication were 20% Fe3O4 (w/v), 4 mg of plasmid, 5.3 mg of glutaraldehyde, and 500 rpm of emulsification rotate speed. Under oscillating magnetic fields (OMFs), 4–6 μg of plasmids was released daily for 21 days. Under the combined application of SMF and OMF, evident neovascularization occurred at the bone defect position 6 weeks after the operation. This result is expected to provide a new type of angiogenesis strategy for the research of bone tissue engineering.
Collapse
Affiliation(s)
- Chen Tao
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy
| | - Xie Lina
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy
| | - Wang Changxuan
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy
| | - Luo Cong
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy
| | - Yang Xiaolan
- Department of Pharmacology, Chongqing Medical University, Yuzhong District, Yixueyuan Road1#, Chongqing, 400016, China
| | - Huang Tao
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy
| | - An Hong
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Youyi Road 1#, Chongqing, 400016, China
| |
Collapse
|
10
|
Seyfoori A, Seyyed Ebrahimi SA, Samiei E, Akbari M. Multifunctional Hybrid Magnetic Microgel Synthesis for Immune-Based Isolation and Post-Isolation Culture of Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24945-24958. [PMID: 31268286 DOI: 10.1021/acsami.9b02959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Circulating tumor cells are of utmost importance among various biomarkers in liquid biopsies as a prognosis indicator of metastasis as well as in chemotherapeutic monitoring. This study introduces an efficient tool composed of soft nano/hybrid immune microgels for magnetic isolation of targeted tumor cells. The development process involves the in situ synthesis of magnetic nanoparticles within the three-dimensional matrix of thermoresponsive microgels. Surface modification and anti-EpCAM conjugation are adjusted by changing the temperature, and a conjugation efficiency of around 70% is achieved by using a protein G linker. Anti-EpCAM-conjugated nano/hybrid magnetic microgels are used to isolate EpCAM-expressing breast adenocarcinoma MCF-7 cells from culture media and whole blood with an efficiency of 75 and 70%, respectively. Furthermore, we demonstrate the ability of the hybrid microgels to isolate cancer cells with a purity of 65% and culture the cells post-isolation for further drug studies. The multifunctional hybrid microcarriers reported in this work can be potentially used for continuous monitoring of cancers and in personalized medicine.
Collapse
Affiliation(s)
- Amir Seyfoori
- Advanced Magnetic Materials Research Center, College of Engineering , University of Tehran , Tehran 14399-57131 , Iran
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute , ACECR , Tehran 1665659911 , Iran
| | - S A Seyyed Ebrahimi
- Advanced Magnetic Materials Research Center, College of Engineering , University of Tehran , Tehran 14399-57131 , Iran
| | | | | |
Collapse
|
11
|
Carvalho A, Gallo J, Pereira DM, Valentão P, Andrade PB, Hilliou L, Ferreira PMT, Bañobre-López M, Martins JA. Magnetic Dehydrodipeptide-Based Self-Assembled Hydrogels for Theragnostic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E541. [PMID: 30987203 PMCID: PMC6523327 DOI: 10.3390/nano9040541] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 12/29/2022]
Abstract
Self-assembled peptide hydrogels have emerged in recent years as the new paradigm in biomaterials research. We have contributed to this field the development of hydrogels based on dehydrodipeptides N-capped with naproxen. The dehydrodipeptide hydrogels can be loaded with drugs, thus being potential nanocarriers for drug delivery. In this work novel dehydrodipeptides containing tyrosine and aspartic acid amino acid residues N-capped with naproxen and C-terminal dehydrophenylalanine were prepared and characterized. Superparamagnetic iron oxide nanoparticles (SPIONs) were incorporated into the dehydrodipeptide-based hydrogels and their effect on the self-assembly, structure and rheological and magnetic properties of the hydrogels was studied. Magnetic hydrogels, with incorporated SPIONs, displayed concentration-dependent T₂-MRI contrast enhancement. Moreover, upon magnetic excitation (alternating magnetic field -AMF-) the SPIONs were able to generate a significant amount of heat. Hence, magnetic hyperthermia can be used as a remote trigger for release of drug cargos and SPIONs incorporated into the self-assembled dehydrodipeptide hydrogels.
Collapse
Affiliation(s)
- André Carvalho
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Juan Gallo
- Diagnostic Tools & Methods/Advanced (Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal.
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Loic Hilliou
- Institute for Polymers and Composites/I3N, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.
| | - Paula M T Ferreira
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Manuel Bañobre-López
- Diagnostic Tools & Methods/Advanced (Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal.
| | - José A Martins
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
12
|
Pourjavadi A, Mazaheri Tehrani Z, Dastanpour L. Smart magnetic self-assembled micelle: an effective nanocarrier for thermo-triggered paclitaxel delivery. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1493687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ali Pourjavadi
- Polymer Research Laboratory, Department Of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Zahra Mazaheri Tehrani
- Polymer Research Laboratory, Department Of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Lida Dastanpour
- Polymer Research Laboratory, Department Of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
13
|
Adibfar A, Amoabediny G, Baghaban Eslaminejad M, Mohamadi J, Bagheri F, Zandieh Doulabi B. VEGF delivery by smart polymeric PNIPAM nanoparticles affects both osteogenic and angiogenic capacities of human bone marrow stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:790-799. [PMID: 30274113 DOI: 10.1016/j.msec.2018.08.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/18/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Bone tissue engineering (BTE) faces a major challenge with cell viability after implantation of a construct due to lack of functional vasculature within the implant. Human bone marrow derived mesenchymal stem cells (hBMSCs) have the potential to undergo transdifferentiation towards an endothelial cell phenotype, which may be appropriate for BTE in conjunction with the appropriate scaffolds and microenvironment. HYPOTHESIS AND METHODS We hypothesized that slow delivery of vascular endothelial growth factor (VEGF) by using nanoparticles in combination with osteogenic stimuli might enhance both osteogenic and angiogenic differentiation of angiogenic primed hBMSCs cultured in an osteogenic microenvironment. Therefore, we developed a new strategy to enhance vascularization in BTE in vitro by synthesis of smart temperature sensitive poly(N‑isopropylacrylamide) (PNIPAM) nanoparticles. We used PNIPAM nanoparticles loaded with collagen to investigate their ability to deliver VEGF for both angiogenic and osteogenic differentiation. RESULTS We used the free radical polymerization technique to synthesize PNIPAM nanoparticles, which had particle sizes of approximately 100 nm at 37 °C and LCST of 30-32 °C. The cumulative VEGF release after 72 h for VEGF loaded PNIPAM (VEGF-PNIPAM) nanoparticles was 70%; for VEGF-PNIPAM loaded collagen hydrogels, it was 23%, which indicated slower release of VEGF in the VEGF-PNIPAM loaded collagen system. Immunocytochemistry (ICC) and inverted microscope visualization confirmed endothelial differentiation and capillary-like tube formation in the osteogenic culture medium after 14 days. Quantitative real-time polymerase chain reaction (QRT-PCR) also confirmed expressions of collagen type I (Col I), runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN) osteogenic markers along with expressions of platelet-endothelial cell adhesion molecule-1 (CD31), von Willebrand factor (vWF), and kinase insert domain receptor (KDR) angiogenic markers. Our data clearly showed that VEGF released from PNIPAM nanoparticles and VEGF-PNIPAM loaded collagen hydrogel could significantly contribute to the quality of engineered bone tissue.
Collapse
Affiliation(s)
- Afsaneh Adibfar
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran; Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Ghassem Amoabediny
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran; Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran; Faculty of Chemical Engineering, College of Engineering, University of Tehran, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Javad Mohamadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Fatemeh Bagheri
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Behrouz Zandieh Doulabi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, MOVE Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Sahle FF, Gulfam M, Lowe TL. Design strategies for physical-stimuli-responsive programmable nanotherapeutics. Drug Discov Today 2018; 23:992-1006. [PMID: 29653291 PMCID: PMC6195679 DOI: 10.1016/j.drudis.2018.04.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
Nanomaterials that respond to externally applied physical stimuli such as temperature, light, ultrasound, magnetic field and electric field have shown great potential for controlled and targeted delivery of therapeutic agents. However, the body of literature on programming these stimuli-responsive nanomaterials to attain the desired level of pharmacologic responses is still fragmented and has not been systematically reviewed. The purpose of this review is to summarize and synthesize the literature on various design strategies for simple and sophisticated programmable physical-stimuli-responsive nanotherapeutics.
Collapse
Affiliation(s)
- Fitsum Feleke Sahle
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Muhammad Gulfam
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| |
Collapse
|
15
|
Boonying P, Martwiset S, Amnuaypanich S. Highly catalytic activity of nickel nanoparticles generated in poly(methylmethacrylate)@poly(2-hydroxyethylmethacrylate) (PMMA@PHEMA) core–shell micelles for the reduction of 4-nitrophenol (4-NP). APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0669-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Nguyen NHA, Darwish MSA, Stibor I, Kejzlar P, Ševců A. Magnetic Poly(N-isopropylacrylamide) Nanocomposites: Effect of Preparation Method on Antibacterial Properties. NANOSCALE RESEARCH LETTERS 2017; 12:571. [PMID: 29052060 PMCID: PMC5648729 DOI: 10.1186/s11671-017-2341-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/10/2017] [Indexed: 05/16/2023]
Abstract
The most challenging task in the preparation of magnetic poly(N-isopropylacrylamide) (Fe3O4-PNIPAAm) nanocomposites for bio-applications is to maximise their reactivity and stability. Emulsion polymerisation, in situ precipitation and physical addition were used to produce Fe3O4-PNIPAAm-1, Fe3O4-PNIPAAm-2 and Fe3O4-PNIPAAm-3, respectively. Their properties were characterised using scanning electron microscopy (morphology), zeta-potential (surface charge), thermogravimetric analysis (stability), vibrating sample magnetometry (magnetisation) and dynamic light scattering. Moreover, we investigated the antibacterial effect of each nanocomposite against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Both Fe3O4-PNIPAAm-1 and Fe3O4-PNIPAAm-2 nanocomposites displayed high thermal stability, zeta potential and magnetisation values, suggesting stable colloidal systems. Overall, the presence of Fe3O4-PNIPAAm nanocomposites, even at lower concentrations, caused significant damage to both E. coli and S. aureus DNA and led to a decrease in cell viability. Fe3O4-PNIPAAm-1 displayed a stronger antimicrobial effect against both bacterial strains than Fe3O4-PNIPAAm-2 and Fe3O4-PNIPAAm-3. Staphylococcus aureus was more sensitive than E. coli to all three magnetic PNIPAAm nanocomposites.
Collapse
Affiliation(s)
- Nhung H. A. Nguyen
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Mohamed S. A. Darwish
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic
- Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor Street, El Zohour Region, Nasr City, Cairo 11727 Egypt
| | - Ivan Stibor
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Pavel Kejzlar
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17 Liberec, Czech Republic
| |
Collapse
|
17
|
Jalili NA, Muscarello M, Gaharwar AK. Nanoengineered thermoresponsive magnetic hydrogels for biomedical applications. Bioeng Transl Med 2016; 1:297-305. [PMID: 29313018 PMCID: PMC5689536 DOI: 10.1002/btm2.10034] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/18/2016] [Accepted: 08/26/2016] [Indexed: 01/03/2023] Open
Abstract
“Smart” hydrogels are part of an emerging class of biomaterials that respond to multiple external stimuli. A range of thermoresponsive magnetic hydrogels is currently being developed for on‐demand delivery of biomolecules for a range of biomedical applications, including therapeutic drug delivery, bioimaging, and regenerative engineering. In this review article, we explore different types of magnetic nanoparticles and thermoresponsive polymers used to fabricate these smart nanoengineered hydrogels. We highlight some of the emerging applications of these stimuli‐responsive hydrogels for biomedical applications. Finally, we capture the growing trend of these smart nanoengineered hydrogels and will identify promising new research directions.
Collapse
Affiliation(s)
- Nima A Jalili
- Dept. of Biomedical Engineering Texas A&M University, College Station TX 77843
| | - Madyson Muscarello
- Dept. of Biomedical Engineering Texas A&M University, College Station TX 77843
| | - Akhilesh K Gaharwar
- Dept. of Biomedical Engineering Texas A&M University, College Station TX 77843.,Dept. of Materials Science and Engineering Texas A&M University, College Station TX 77843.,Center for Remote Health Technologies and Systems, Texas A&M University, College Station TX 77843
| |
Collapse
|
18
|
In vitro studies of biocompatible thermo-responsive hydrogels with controlled-release basic fibroblast growth factor. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Kurzhals S, Zirbs R, Reimhult E. Synthesis and Magneto-Thermal Actuation of Iron Oxide Core-PNIPAM Shell Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19342-52. [PMID: 26270412 PMCID: PMC4559841 DOI: 10.1021/acsami.5b05459] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/13/2015] [Indexed: 05/03/2023]
Abstract
Superparamagnetic nanoparticles have been proposed for many applications in biotechnology and medicine. In this paper, it is demonstrated how the excellent colloidal stability and magnetic properties of monodisperse and individually densely grafted iron oxide nanoparticles can be used to manipulate reversibly the solubility of nanoparticles with a poly(N-isopropylacrylamide)nitrodopamine shell. "Grafting-to" and "grafting-from" methods for synthesis of an irreversibly anchored brush shell to monodisperse, oleic acid coated iron oxide cores are compared. Thereafter, it is shown that local heating by magnetic fields as well as global thermal heating can be used to efficiently and reversibly aggregate, magnetically extract nanoparticles from solution and spontaneously redisperse them. The coupling of magnetic and thermally responsive properties points to novel uses as smart materials, for example, in integrated devices for molecular separation and extraction.
Collapse
Affiliation(s)
- Steffen Kurzhals
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University
of Natural Resources and Life Sciences, Vienna, Muthgasse 11, A-1190 Vienna, Austria
| | - Ronald Zirbs
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University
of Natural Resources and Life Sciences, Vienna, Muthgasse 11, A-1190 Vienna, Austria
| | - Erik Reimhult
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University
of Natural Resources and Life Sciences, Vienna, Muthgasse 11, A-1190 Vienna, Austria
| |
Collapse
|
20
|
Niemirowicz K, Surel U, Wilczewska AZ, Mystkowska J, Piktel E, Gu X, Namiot Z, Kułakowska A, Savage PB, Bucki R. Bactericidal activity and biocompatibility of ceragenin-coated magnetic nanoparticles. J Nanobiotechnology 2015; 13:32. [PMID: 25929281 PMCID: PMC4458011 DOI: 10.1186/s12951-015-0093-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/23/2015] [Indexed: 01/04/2023] Open
Abstract
Background Ceragenins, synthetic mimics of endogenous antibacterial peptides, are promising candidate antimicrobial agents. However, in some settings their strong bactericidal activity is associated with toxicity towards host cells. To modulate ceragenin CSA-13 antibacterial activity and biocompatibility, CSA-13-coated magnetic nanoparticles (MNP-CSA-13) were synthesized. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to characterize MNP-CSA-13 physicochemical properties. Bactericidal action and ability of these new compounds to prevent Pseudomonas. aeruginosa biofilm formation were assessed using a bacteria killing assay and crystal violet staining, respectively. Release of hemoglobin from human red blood cells was measured to evaluate MNP-CSA-13 hemolytic activity. In addition, we used surface activity measurements to monitor CSA-13 release from the MNP shell. Zeta potentials of P. aeruginosa cells and MNP-CSA-13 were determined to assess the interactions between the bacteria and nanoparticles. Morphology of P. aeruginosa subjected to MNP-CSA-13 treatment was evaluated using atomic force microscopy (AFM) to determine structural changes indicative of bactericidal activity. Results Our studies revealed that the MNP-CSA-13 nanosystem is stable and may be used as a pH control system to release CSA-13. MNP-CSA-13 exhibits strong antibacterial activity, and the ability to prevent bacteria biofilm formation in different body fluids. Additionally, a significant decrease in CSA-13 hemolytic activity was observed when the molecule was immobilized on the nanoparticle surface. Conclusion Our results demonstrate that CSA-13 retains bactericidal activity when immobilized on a MNP while biocompatibility increases when CSA-13 is covalently attached to the nanoparticle.
Collapse
Affiliation(s)
- Katarzyna Niemirowicz
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland.
| | - Urszula Surel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland.
| | | | - Joanna Mystkowska
- Department of Materials and Biomedical Engineering, Białystok University of Technology, 15-351, Białystok, Poland.
| | - Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland.
| | - Xiaobo Gu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| | - Zbigniew Namiot
- Department of Physiology, Medical University of Białystok, 15-230, Białystok, Poland.
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, 15-230, Bialystok, Poland.
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland. .,Department of Physiology, Pathophysiology and Microbiology of Infections, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, 25-317, Kielce, Poland.
| |
Collapse
|
21
|
Farooqi ZH, Iqbal S, Khan SR, Kanwal F, Begum R. Cobalt and nickel nanoparticles fabricated p(NIPAM-co-MAA) microgels for catalytic applications. E-POLYMERS 2014. [DOI: 10.1515/epoly-2014-0111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn this research work, multi-responsive poly(N-isopropylacrylamide-co-methacrylic acid) copolymer microgels were synthesized via emulsion polymerization in aqueous medium. Then, nickel and cobalt nanoparticles were fabricated within these microgels by in situ reduction of metal ions using sodium borohydride (NaBH4) as a reducing agent. Fourier transform infrared spectroscopy was used to characterize these microgels. The pH sensitivity of these copolymer microgels was studied using dynamic light scattering technique (DLS). DLS studies revealed that the hydrodynamic radius of these microgels increased with the increase in pH of the medium at 25°C. The catalytic activity of hybrid microgels for the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) was investigated by UV-visible spectrophotometery. The value of apparent rate constant of reaction was found to change linearly with catalyst dosage. The nickel-based hybrid system was found to be five times more efficient as a catalyst compared to the cobalt-based hybrid system for the reduction of 4-NP to 4-AP in aqueous medium.
Collapse
Affiliation(s)
- Zahoor H. Farooqi
- 1Institute of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Sadia Iqbal
- 1Institute of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Shanza Rauf Khan
- 1Institute of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Farah Kanwal
- 1Institute of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Robina Begum
- 2Centre for Undergraduate Studies, University of the Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|