1
|
Slavin BV, Ehlen QT, Costello JP, Nayak VV, Bonfante EA, Benalcázar Jalkh EB, Runyan CM, Witek L, Coelho PG. 3D Printing Applications for Craniomaxillofacial Reconstruction: A Sweeping Review. ACS Biomater Sci Eng 2023; 9:6586-6609. [PMID: 37982644 PMCID: PMC11229092 DOI: 10.1021/acsbiomaterials.3c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The field of craniomaxillofacial (CMF) surgery is rich in pathological diversity and broad in the ages that it treats. Moreover, the CMF skeleton is a complex confluence of sensory organs and hard and soft tissue with load-bearing demands that can change within millimeters. Computer-aided design (CAD) and additive manufacturing (AM) create extraordinary opportunities to repair the infinite array of craniomaxillofacial defects that exist because of the aforementioned circumstances. 3D printed scaffolds have the potential to serve as a comparable if not superior alternative to the "gold standard" autologous graft. In vitro and in vivo studies continue to investigate the optimal 3D printed scaffold design and composition to foster bone regeneration that is suited to the unique biological and mechanical environment of each CMF defect. Furthermore, 3D printed fixation devices serve as a patient-specific alternative to those that are available off-the-shelf with an opportunity to reduce operative time and optimize fit. Similar benefits have been found to apply to 3D printed anatomical models and surgical guides for preoperative or intraoperative use. Creation and implementation of these devices requires extensive preclinical and clinical research, novel manufacturing capabilities, and strict regulatory oversight. Researchers, manufacturers, CMF surgeons, and the United States Food and Drug Administration (FDA) are working in tandem to further the development of such technology within their respective domains, all with a mutual goal to deliver safe, effective, cost-efficient, and patient-specific CMF care. This manuscript reviews FDA regulatory status, 3D printing techniques, biomaterials, and sterilization procedures suitable for 3D printed devices of the craniomaxillofacial skeleton. It also seeks to discuss recent clinical applications, economic feasibility, and future directions of this novel technology. By reviewing the current state of 3D printing in CMF surgery, we hope to gain a better understanding of its impact and in turn identify opportunities to further the development of patient-specific surgical care.
Collapse
Affiliation(s)
- Blaire V Slavin
- University of Miami Miller School of Medicine, 1011 NW 15th St., Miami, Florida 33136, United States
| | - Quinn T Ehlen
- University of Miami Miller School of Medicine, 1011 NW 15th St., Miami, Florida 33136, United States
| | - Joseph P Costello
- University of Miami Miller School of Medicine, 1011 NW 15th St., Miami, Florida 33136, United States
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th St., Miami, Florida 33136, United States
| | - Estavam A Bonfante
- Department of Prosthodontics and Periodontology, University of Sao Paulo, Bauru School of Dentistry, Alameda Dr. Octávio Pinheiro Brisolla, Quadra 9 - Jardim Brasil, Bauru São Paulo 17012-901, Brazil
| | - Ernesto B Benalcázar Jalkh
- Department of Prosthodontics and Periodontology, University of Sao Paulo, Bauru School of Dentistry, Alameda Dr. Octávio Pinheiro Brisolla, Quadra 9 - Jardim Brasil, Bauru São Paulo 17012-901, Brazil
| | - Christopher M Runyan
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, 475 Vine St, Winston-Salem, North Carolina 27101, United States
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, 345 E. 24th St., New York, New York 10010, United States
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York University, 222 E 41st St., New York, New York 10017, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, 6 MetroTech Center, Brooklyn, New York 11201, United States
| | - Paulo G Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th St., Miami, Florida 33136, United States
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, 1120 NW 14th St., Miami, Florida 33136, United States
| |
Collapse
|
2
|
Jin P, Liu L, Cheng L, Chen X, Xi S, Jiang T. Calcium-to-phosphorus releasing ratio affects osteoinductivity and osteoconductivity of calcium phosphate bioceramics in bone tissue engineering. Biomed Eng Online 2023; 22:12. [PMID: 36759894 PMCID: PMC9912630 DOI: 10.1186/s12938-023-01067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Calcium phosphate (Ca-P) bioceramics, including hydroxyapatite (HA), biphasic calcium phosphate (BCP), and beta-tricalcium phosphate (β-TCP), have been widely used in bone reconstruction. Many studies have focused on the osteoconductivity or osteoinductivity of Ca-P bioceramics, but the association between osteoconductivity and osteoinductivity is not well understood. In our study, the osteoconductivity of HA, BCP, and β-TCP was investigated based on the osteoblastic differentiation in vitro and in situ as well as calvarial defect repair in vivo, and osteoinductivity was evaluated by using pluripotent mesenchymal stem cells (MSCs) in vitro and heterotopic ossification in muscles in vivo. Our results showed that the cell viability, alkaline phosphatase activity, and expression of osteogenesis-related genes, including osteocalcin (Ocn), bone sialoprotein (Bsp), alpha-1 type I collagen (Col1a1), and runt-related transcription factor 2 (Runx2), of osteoblasts each ranked as BCP > β-TCP > HA, but the alkaline phosphatase activity and expression of osteogenic differentiation genes of MSCs each ranked as β-TCP > BCP > HA. Calvarial defect implantation of Ca-P bioceramics ranked as BCP > β-TCP ≥ HA, but intramuscular implantation ranked as β-TCP ≥ BCP > HA in vivo. Further investigation indicated that osteoconductivity and osteoinductivity are affected by the Ca/P ratio surrounding the Ca-P bioceramics. Thus, manipulating the appropriate calcium-to-phosphorus releasing ratio is a critical factor for determining the osteoinductivity of Ca-P bioceramics in bone tissue engineering.
Collapse
Affiliation(s)
- Pan Jin
- grid.410654.20000 0000 8880 6009Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China ,Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and MinistryGuangxi Medical University, Nanning, 530021 Guangxi China
| | - Lei Liu
- grid.452877.b0000 0004 6005 8466Articular Surgery, The Second Nanning People’s Hospital, Third Affiliated Hospital of Guangxi Medical University), Nanning, 530031 Guangxi China
| | - Lin Cheng
- grid.410654.20000 0000 8880 6009Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Xichi Chen
- grid.410654.20000 0000 8880 6009Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Shanshan Xi
- Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China. .,Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
3
|
Wu Y, Yang L, Chen L, Geng M, Xing Z, Chen S, Zeng Y, Zhou J, Sun K, Yang X, Shen B. Core-Shell Structured Porous Calcium Phosphate Bioceramic Spheres for Enhanced Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47491-47506. [PMID: 36251859 DOI: 10.1021/acsami.2c15614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Adequate new bone regeneration in bone defects has always been a challenge as it requires excellent and efficient osteogenesis. Calcium phosphate (CaP) bioceramics, including hydroxyapatite (HA) and biphasic calcium phosphates (BCPs), have been extensively used in clinical bone defect filling due to their good osteoinductivity and biodegradability. Here, for the first time, we designed and fabricated two porous CaP bioceramic granules with core-shell structures, named in accordance with their composition as BCP@HA and HA@BCP (core@shell). The spherical shape and the porous structure of these granules were achieved by the calcium alginate gel molding technology combined with a H2O2 foaming process. These granules could be stacked to build a porous structure with a porosity of 65-70% and a micropore size distribution between 150 and 450 μm, which is reported to be good for new bone ingrowth. In vitro experiments confirmed that HA@BCP bioceramic granules could promote the proliferation and osteogenic ability when cocultured with bone marrow mesenchymal stem cells, while inhibiting the differentiation of RAW264.7 cells into osteoclasts. In vivo, 12 weeks of implantation in a critical-sized femoral bone defect animal model showed a higher bone volume fraction and bone mineral density in the HA@BCP group than in the BCP@HA or pure HA or BCP groups. From histological analysis, we discovered that the new bone tissue in the HA@BCP group was invading from the surface to the inside of the granules, and most of the bioceramic phase was replaced by the new bone. A higher degree of vascularization at the defect region repaired by HA@BCP was revealed by 3D microvascular perfusion angiography in terms of a higher vessel volume fraction. The current study demonstrated that the core-shell structured HA@BCP bioceramic granules could be a promising candidate for bone defect repair.
Collapse
Affiliation(s)
- Yuangang Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Long Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Li Chen
- Analytical & Testing Center, Sichuan University, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064, China
| | - Mengyu Geng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhengyi Xing
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Siyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yi Zeng
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhan Zhou
- Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaibo Sun
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bin Shen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Bone Tissue Regeneration in the Oral and Maxillofacial Region: A Review on the Application of Stem Cells and New Strategies to Improve Vascularization. Stem Cells Int 2019; 2019:6279721. [PMID: 32082383 PMCID: PMC7012224 DOI: 10.1155/2019/6279721] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
Bone tissue engineering techniques are a promising alternative for the use of autologous bone grafts to reconstruct bone defects in the oral and maxillofacial region. However, for successful bone regeneration, adequate vascularization is a prerequisite. This review presents and discusses the application of stem cells and new strategies to improve vascularization, which may lead to feasible clinical applications. Multiple sources of stem cells have been investigated for bone tissue engineering. The stromal vascular fraction (SVF) of human adipose tissue is considered a promising single source for a heterogeneous population of essential cells with, amongst others, osteogenic and angiogenic potential. Enhanced vascularization of tissue-engineered grafts can be achieved by different mechanisms: vascular ingrowth directed from the surrounding host tissue to the implanted graft, vice versa, or concomitantly. Vascular ingrowth into the implanted graft can be enhanced by (i) optimizing the material properties of scaffolds and (ii) their bioactivation by incorporation of growth factors or cell seeding. Vascular ingrowth directed from the implanted graft towards the host tissue can be achieved by incorporating the graft with either (i) preformed microvascular networks or (ii) microvascular fragments (MF). The latter may have stimulating actions on both vascular ingrowth and outgrowth, since they contain angiogenic stem cells like SVF, as well as vascularized matrix fragments. Both adipose tissue-derived SVF and MF are cell sources with clinical feasibility due to their large quantities that can be harvested and applied in a one-step surgical procedure. During the past years, important advancements of stem cell application and vascularization in bone tissue regeneration have been made. The development of engineered in vitro 3D models mimicking the bone defect environment would facilitate new strategies in bone tissue engineering. Successful clinical application requires innovative future investigations enhancing vascularization.
Collapse
|
5
|
Li X, Song T, Chen X, Wang M, Yang X, Xiao Y, Zhang X. Osteoinductivity of Porous Biphasic Calcium Phosphate Ceramic Spheres with Nanocrystalline and Their Efficacy in Guiding Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3722-3736. [PMID: 30629405 DOI: 10.1021/acsami.8b18525] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Conventional biphasic calcium phosphate (BCP) bioceramics are facing many challenges to meet the demands of regenerative medicine, and their biological properties are limited to a large extent due to the large grain size in comparison with nanocrystalline of natural bone mineral. Herein, this study aimed to fabricate porous BCP ceramic spheres with nanocrystalline (BCP-N) by combining alginate gelatinizing with microwave hybrid sintering methods and investigated their in vitro and in vivo combinational osteogenesis potential. For comparison, spherical BCP granules with microcrystalline (BCP-G) and commercially irregular BCP granules (BAM, BCP-I) were selected as control. The obtained BCP-N with specific nanotopography could well initiate and regulate in vitro biological response, such as degradation, protein adsorption, bone-like apatite formation, cell behaviors, and osteogenic differentiation. In vivo canine intramuscular implantation and rabbit mandible critical-sized bone defect repair further confirmed that nanotopography in BCP-N might be responsible for the stronger osteoinductivity and bone regenerative ability than BCP-G and BCP-I. Collectedly, due to nanotopographic similarities with nature bone apatite, BCP-N has excellent efficacy in guiding bone regeneration and holds great potential to become a potential alternative to standard bone grafts in bone defect filling applications.
Collapse
Affiliation(s)
- Xiangfeng Li
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Tao Song
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Menglu Wang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
6
|
Tang Q, Hu Z, Jin H, Zheng G, Yu X, Wu G, Liu H, Zhu Z, Xu H, Zhang C, Shen L. Microporous polysaccharide multilayer coated BCP composite scaffolds with immobilised calcitriol promote osteoporotic bone regeneration both in vitro and in vivo. Theranostics 2019; 9:1125-1143. [PMID: 30867820 PMCID: PMC6401415 DOI: 10.7150/thno.29566] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Incorporating a biomimetic coating and integrating osteoinductive biomolecules into basic bone substitutes are two common strategies to improve osteogenic capabilities in bone tissue engineering. Currently, the underlying mechanism of osteoporosis (OP)-related deficiency of osteogenesis remains unclear, and few treatments target at OP-related bone regeneration. Herein, we describe a self-assembling polyelectrolyte multilayered (PEM) film coating with local immobilisation of calcitriol (Cal) in biphasic calcium phosphate (BCP) scaffolds to promote osteoporotic bone regeneration by targeting the calcium sensing receptor (CaSR). Methods: The ovariectomy-induced functional changes in bone marrow mesenchymal stem cells (BMSCs), protective effects of Cal, and the potential mechanism were all verified. A PEM film composed of hyaluronic acid (HA) and chitosan (Chi) was prepared through layer-by-layer self-assembly. The morphology, growth behaviour, and drug retention capability of the composite scaffolds were characterised, and their biocompatibility and therapeutic efficacy for bone regeneration were systematically explored in vitro and in vivo.Results: The osteogenic differentiation, adhesion, and proliferation abilities of ovariectomised rat BMSCs (OVX-rBMSCs) decreased, in accordance with the deficiency of CaSR. Cal effectively activated osteogenesis in these OVX-rBMSCs by binding specifically to the active pocket of the CaSR structure, while the biomimetic PEM coating augmented OVX-rBMSCs proliferation and adhesion due to its porous surface structure. The PEM-coated scaffolds showed advantages in Cal loading and retention, especially at lower drug concentrations. HA/Chi PEM synergised with Cal to improve the proliferation, adhesion, and osteogenesis of OVX-rBMSCs and promote bone regeneration and BCP degradation in the critical-size calvarial bone defect model of OVX rats. Conclusion: A composite scaffold based on BCP, created by simply combining a biomimetic PEM coating and Cal immobilisation, could be clinically useful and has marked advantages as a targeted, off-the-shelf, cell-free treatment option for osteoporotic bone regeneration.
Collapse
Affiliation(s)
- Qian Tang
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China
- The second School of Medicine, Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China
- Department of Orthopaedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Zhichao Hu
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China
- The second School of Medicine, Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China
| | - Haiming Jin
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China
- The second School of Medicine, Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China
| | - Gang Zheng
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China
- The second School of Medicine, Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China
| | - XingFang Yu
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China
- The second School of Medicine, Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije University Amsterdam and University of Amsterdam, Amsterdam, Nord-Holland, the Netherlands
| | - Haixiao Liu
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China
- The second School of Medicine, Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China
| | - Zhenzhong Zhu
- Department of Orthopaedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Huazi Xu
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China
- The second School of Medicine, Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China
| | - Changqing Zhang
- Department of Orthopaedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Liyan Shen
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China
- The second School of Medicine, Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China
| |
Collapse
|
7
|
Tang Z, Li X, Tan Y, Fan H, Zhang X. The material and biological characteristics of osteoinductive calcium phosphate ceramics. Regen Biomater 2018; 5:43-59. [PMID: 29423267 PMCID: PMC5798025 DOI: 10.1093/rb/rbx024] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/16/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
The discovery of osteoinductivity of calcium phosphate (Ca-P) ceramics has set an enduring paradigm of conferring biological regenerative activity to materials with carefully designed structural characteristics. The unique phase composition and porous structural features of osteoinductive Ca-P ceramics allow it to interact with signaling molecules and extracellular matrices in the host system, creating a local environment conducive to new bone formation. Mounting evidence now indicate that the osteoinductive activity of Ca-P ceramics is linked to their physicochemical and three-dimensional structural properties. Inspired by this conceptual breakthrough, many laboratories have shown that other materials can be also enticed to join the rank of tissue-inducing biomaterials, and besides the bones, other tissues such as cartilage, nerves and blood vessels were also regenerated with the assistance of biomaterials. Here, we give a brief historical recount about the discovery of the osteoinductivity of Ca-P ceramics, summarize the underlying material factors and biological characteristics, and discuss the mechanism of osteoinduction concerning protein adsorption, and the interaction with different types of cells, and the involvement of the vascular and immune systems.
Collapse
Affiliation(s)
- Zhurong Tang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Yanfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| |
Collapse
|
8
|
Pei X, Ma L, Zhang B, Sun J, Sun Y, Fan Y, Gou Z, Zhou C, Zhang X. Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering. Biofabrication 2017; 9:045008. [PMID: 28976356 DOI: 10.1088/1758-5090/aa90ed] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hierarchical porosity, which includes micropores and macropores in scaffolds, contributes to important multiple biological functions for tissue regeneration. This paper introduces a two-step method of combining three-dimensional printing (3DP) and microwave sintering to fabricate two-level hierarchical porous scaffolds. The results showed that 3D printing made the macroporous structure well-controlled and microwave sintering generated micropores on the macropore surface. The resulting hierarchical macro/microporous hydroxyapatite scaffold induced bone formation following intramuscular implantation. Moreover, when comparing the hierarchical macro/microporous hydroxyapatite scaffold to the non-osteoinductive hydroxyapatite scaffolds (either 3D printed or H2O2 foamed) subjected to muffle sintering which do not have micropores, the critical role of micropores in material-driven bone formation was shown. The findings presented herein could be useful for the further optimization of bone grafting materials for bone regeneration.
Collapse
Affiliation(s)
- Xuan Pei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Li X, Wang M, Deng Y, Chen X, Xiao Y, Zhang X. Fabrication and Properties of Ca-P Bioceramic Spherical Granules with Interconnected Porous Structure. ACS Biomater Sci Eng 2017; 3:1557-1566. [DOI: 10.1021/acsbiomaterials.7b00232] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiangfeng Li
- National Engineering Research
Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Menglu Wang
- National Engineering Research
Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yanglong Deng
- National Engineering Research
Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xuening Chen
- National Engineering Research
Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yumei Xiao
- National Engineering Research
Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research
Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Eliaz N, Metoki N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E334. [PMID: 28772697 PMCID: PMC5506916 DOI: 10.3390/ma10040334] [Citation(s) in RCA: 426] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
Abstract
Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs.
Collapse
Affiliation(s)
- Noam Eliaz
- Biomaterials and Corrosion Lab, Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel.
| | - Noah Metoki
- Biomaterials and Corrosion Lab, Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel.
| |
Collapse
|