1
|
Ganeshaaraj G, Kaushalya S, Kondarage AI, Karunaratne A, Jones JR, Nanayakkara ND. Semantic Segmentation of Micro-CT Images to Analyze Bone Ingrowth into Biodegradable Scaffolds. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3830-3833. [PMID: 36086069 DOI: 10.1109/embc48229.2022.9870828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The healing of bone fractures is a complex and well-orchestrated physiological process, but normal healing is compromised when the fracture is large. These large non-union fractures often require a template with surgical intervention for healing. The standard treatment, autografting, has drawbacks such as donor site pain and limited availability. Biodegradable scaffolds developed using biomaterials such as bioactive glass are a potential solution. Investigation of bone ingrowth into biodegradable scaffolds is an important aspect of their development. Micro-CT (μ-CT) imaging is widely used to evaluate and quantify tissue ingrowth into scaffolds in 3D. Existing segmentation techniques have low accuracy in differentiating bone and scaffold, and need improvements to accurately quantify the bone in-growth into the scaffold using μ-CT scans. This study proposes a novel 3-stage pipeline for better outcome. The first stage of the pipeline is based on a convolutional neural network for the segmentation of the scaffold, bone, and pores from μ-CT images to investigate bone ingrowth. A 3D rigid image registration procedure was employed in the next stage to extract the volume of interest (VOI) for the analysis. In the final stage, algorithms were developed to quantitatively analyze bone ingrowth and scaffold degradation. The best model for segmentation produced a dice similarity coefficient score of 90.1, intersection over union score of 83.9, and pixel accuracy of 93.1 for unseen test data.
Collapse
|
2
|
Quality control methods in musculoskeletal tissue engineering: from imaging to biosensors. Bone Res 2021; 9:46. [PMID: 34707086 PMCID: PMC8551153 DOI: 10.1038/s41413-021-00167-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/23/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering is rapidly progressing toward clinical application. In the musculoskeletal field, there has been an increasing necessity for bone and cartilage replacement. Despite the promising translational potential of tissue engineering approaches, careful attention should be given to the quality of developed constructs to increase the real applicability to patients. After a general introduction to musculoskeletal tissue engineering, this narrative review aims to offer an overview of methods, starting from classical techniques, such as gene expression analysis and histology, to less common methods, such as Raman spectroscopy, microcomputed tomography, and biosensors, that can be employed to assess the quality of constructs in terms of viability, morphology, or matrix deposition. A particular emphasis is given to standards and good practices (GXP), which can be applicable in different sectors. Moreover, a classification of the methods into destructive, noninvasive, or conservative based on the possible further development of a preimplant quality monitoring system is proposed. Biosensors in musculoskeletal tissue engineering have not yet been used but have been proposed as a novel technology that can be exploited with numerous advantages, including minimal invasiveness, making them suitable for the development of preimplant quality control systems.
Collapse
|
3
|
Guillaume F, Le Cann S, Tengattini A, Törnquist E, Falentin-Daudre C, Albini Lomami H, Petit Y, Isaksson H, Haïat G. Neutron microtomography to investigate the bone-implant interface-comparison with histological analysis. Phys Med Biol 2021; 66. [PMID: 33831846 DOI: 10.1088/1361-6560/abf603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/08/2021] [Indexed: 12/20/2022]
Abstract
Bone properties and especially its microstructure around implants are crucial to evaluate the osseointegration of prostheses in orthopaedic, maxillofacial and dental surgeries. Given the intrinsic heterogeneous nature of the bone microstructure, an ideal probing tool to understand and quantify bone formation must be spatially resolved. X-ray imaging has often been employed, but is limited in the presence of metallic implants, where severe artifacts generally arise from the high attenuation of metals to x-rays. Neutron tomography has recently been proposed as a promising technique to study bone-implant interfaces, thanks to its lower interaction with metals. The aim of this study is to assess the potential of neutron tomography for the characterisation of bone tissue in the vicinity of a metallic implant. A standardised implant with a bone chamber was implanted in rabbit bone. Four specimens were imaged with neutron tomography and subsequently compared to non-decalcified histology to stain soft and mineralised bone tissues, used here as a ground-truth reference. An intensity-based image registration procedure was performed to place the 12 histological slices within the corresponding 3D neutron volume. Significant correlations (p < 0.01) were obtained between the two modalities for the bone-implant contact (BIC) ratio (R = 0.77) and the bone content inside the chamber (R = 0.89). The results indicate that mineralised bone tissue can be reliably detected by neutron tomography. However, theBICratio and bone content were found to be overestimated with neutron imaging, which may be explained by its sensitivity to non-mineralised soft tissues, as revealed by histological staining. This study highlights the suitability of neutron tomography for the analysis of the bone-implant interface. Future work will focus on further distinguishing soft tissues from bone tissue, which could be aided by the adoption of contrast agents.
Collapse
Affiliation(s)
- Florian Guillaume
- Département de génie mécanique, École de technologie supérieure, Montréal, Canada.,MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, F-94010 Creteil, France
| | - Sophie Le Cann
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, F-94010 Creteil, France
| | - Alessandro Tengattini
- Institut Laue Langevin, Grenoble, France.,Laboratoire 3SR, Université Grenoble Alpes, Gières, France
| | - Elin Törnquist
- Department of Biomedical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Céline Falentin-Daudre
- LBPS/CSPBAT, UMR CNRS 7244, Institut Galilée, Université Sorbonne Paris Nord, 99 avenue JB Clément 93430- Villetaneuse, France
| | - Hugues Albini Lomami
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, F-94010 Creteil, France
| | - Yvan Petit
- Département de génie mécanique, École de technologie supérieure, Montréal, Canada
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Guillaume Haïat
- MSME, CNRS UMR 8208, Univ Paris Est Creteil, Univ Gustave Eiffel, F-94010 Creteil, France
| |
Collapse
|
4
|
An In Vivo Study in Rat Femurs of Bioactive Silicate Coatings on Titanium Dental Implants. J Clin Med 2020; 9:jcm9051290. [PMID: 32365687 PMCID: PMC7288333 DOI: 10.3390/jcm9051290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/10/2020] [Accepted: 04/26/2020] [Indexed: 12/16/2022] Open
Abstract
Silica-based ceramics have been proposed for coating purposes to enhance dental and orthopedic titanium (Ti) implant bioactivity. The aim of this study was to investigate the influence of sphene-based bioceramic (CaO.TiO2.SiO2) coatings on implant osseointegration in vivo. Sphene coatings were obtained from preceramic polymers and nano-sized active precursors and deposited by an automatic airbrush. Twenty customized Ti implants, ten sphene-coated and ten uncoated rough implants were implanted into the proximal femurs of ten Sprague-Dawley rats. Overall, cortical and cancellous bone-to-implant contact (BIC) were determined using micro-computed tomography (micro-CT) at 14 and 28 days. Moreover, peri-implant bone healing was histologically and histomorphometrically evaluated. The white blood cell count in the synovial fluid of the knee joints, if present, was also assessed. No difference in the BIC values was observed between the sphene-coated and uncoated implants, overall and in the two bone compartments (p > 0.05). Delamination of the coating occurred in three cases. Consistently with micro-CT data, the histological evaluation revealed no differences between the two groups. In addition, no synovial fluid could be collected on the test side, thus confirming sphene biocompatibility. In conclusion, sphene coating was found to be a suitable material for biomedical applications. Further studies are needed to improve coating adhesion to the implants.
Collapse
|
5
|
FERNÁNDEZ MPEÑA, WITTE F, TOZZI G. Applications of X‐ray computed tomography for the evaluation of biomaterial‐mediated bone regeneration in critical‐sized defects. J Microsc 2020; 277:179-196. [DOI: 10.1111/jmi.12844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/06/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022]
Affiliation(s)
- M. PEÑA FERNÁNDEZ
- Zeiss Global Centre, School of Mechanical and Design EngineeringUniversity of Portsmouth Portsmouth UK
| | - F. WITTE
- Biotrics Bioimplants GmbH Berlin Germany
| | - G. TOZZI
- Zeiss Global Centre, School of Mechanical and Design EngineeringUniversity of Portsmouth Portsmouth UK
| |
Collapse
|
6
|
Oz U, Ruellas AC, Westgate PM, Cevidanes LH, Huja SS. Novel application and validation of in vivo micro-CT to study bone modelling in 3D. Orthod Craniofac Res 2019; 22 Suppl 1:90-95. [PMID: 31074146 DOI: 10.1111/ocr.12265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim is to highlight a novel three-dimensional (3D) imaging methodology using micro-CT scans to visualize and measure bone modelling in an animal model. In order to validate the new methodology, we compared the 3D imaging method to traditional two-dimensional (2D) histomorphometry to assess growth changes in the jaws of a rodent. SETTING AND SAMPLE POPULATION Rodent animal models. MATERIAL AND METHODS Eleven rats were obtained from a larger previously published study. Sixty undecalcified histological sections from the maxilla and corresponding high-resolution in vivo micro-CT reconstructions were obtained. Bone modelling changes on specific alveolar surfaces were measured using traditional histomorphometry. Measurements of bone growth were also obtained via 3D Slicer software from 3D micro-CT generated models from the same plane containing the histological images. Both qualitative and quantitative 3D methods were compared to traditional histological measurements. Quantitative agreement between methods was categorized as follows: poor (>150 μm), good (150-100 μm) and excellent (<100 μm). RESULTS Both qualitative (88.3%) and quantitative (86.7%) 3D measurements showed excellent agreement, when compared to histomorphometric measurements. Only 1.7% and 5% of the comparisons exhibited poor agreement (>150 μm) for qualitative and quantitative methods, respectively. DISCUSSION The new 3D superimposition method compares very favourably with traditional histology. It is likely that in the future, such methods will be used in studies of bone adaptation. CONCLUSION The 3D micro-CT qualitative and quantitative methods are reliable for measuring bone modelling changes and compare favourably to histology for the specific application described.
Collapse
Affiliation(s)
- Ulas Oz
- Department of Orthodontics, Near East University School of Dentistry, Nicosia, Northern Cyprus
| | - Antonio Carlos Ruellas
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Philip M Westgate
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
| | - Lucia H Cevidanes
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Sarandeep S Huja
- Department of Orthodontics, James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
7
|
Choi JY, Park JI, Chae JS, Yeo ISL. Comparison of micro-computed tomography and histomorphometry in the measurement of bone-implant contact ratios. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 128:87-95. [PMID: 30692058 DOI: 10.1016/j.oooo.2018.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/07/2018] [Accepted: 12/21/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The purpose of this study was to measure the 3-dimensional (3D) bone-to-implant contact (BIC) ratios calculated with an associated software algorithm on 3D micro-computed tomography (μCT) scans and compare them with measurements made with 2-dimensional histomorphometry. STUDY DESIGN For uncomplicated calculation of the 3D BIC ratios, 16 implants (8 grade 2 titanium and 8 grade 4 titanium) with simple cylindrical geometry were inserted into 8 rabbit tibiae; 2 implants were inserted into each tibia. The experimental animals were sacrificed at 2 weeks after surgery. The implants were surgically removed en bloc with surrounding bone. 3D μCT images were acquired and reconstructed, and histomorphometric procedures were performed. The calculated 3D BIC ratios were compared with the histomorphometrically measured BIC ratios. RESULTS When the 3D BIC ratios calculated in this study were compared with the BIC ratios measured conventionally by using histologic slides for light microscopy, no significant statistical correlation was found between the 2 ratios (P ≥ .35). CONCLUSIONS This study indicated that 3D μCT should be used for more accurate BIC assessment to produce an overall 3D picture for the bone-implant interface.
Collapse
Affiliation(s)
- Jung-Yoo Choi
- Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jae-Il Park
- Senior Researcher, Animal Facility of Aging Science, Korea Basic Science Institute, Gwangju, Korea
| | - Ji Soo Chae
- Life Sciences, PerkinElmer Korea, Guro-gu, Seoul, Korea
| | - In-Sung Luke Yeo
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
8
|
Cengiz IF, Oliveira JM, Reis RL. Micro-CT - a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results. Biomater Res 2018; 22:26. [PMID: 30275969 PMCID: PMC6158835 DOI: 10.1186/s40824-018-0136-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/03/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cell behavior is the key to tissue regeneration. Given the fact that most of the cells used in tissue engineering are anchorage-dependent, their behavior including adhesion, growth, migration, matrix synthesis, and differentiation is related to the design of the scaffolds. Thus, characterization of the scaffolds is highly required. Micro-computed tomography (micro-CT) provides a powerful platform to analyze, visualize, and explore any portion of interest in the scaffold in a 3D fashion without cutting or destroying it with the benefit of almost no sample preparation need. MAIN BODY This review highlights the relationship between the scaffold microstructure and cell behavior, and provides the basics of the micro-CT method. In this work, we also analyzed the original papers that were published in 2016 through a systematic search to address the need for specific improvements in the methods section of the papers including the amount of provided information from the obtained results. CONCLUSION Micro-CT offers a unique microstructural analysis of biomaterials, notwithstanding the associated challenges and limitations. Future studies that will include micro-CT characterization of scaffolds should report the important details of the method, and the derived quantitative and qualitative information can be maximized.
Collapse
Affiliation(s)
- Ibrahim Fatih Cengiz
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
9
|
Cengiz IF, Oliveira JM, Reis RL. Micro-computed tomography characterization of tissue engineering scaffolds: effects of pixel size and rotation step. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:129. [PMID: 28721665 DOI: 10.1007/s10856-017-5942-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/27/2017] [Indexed: 05/27/2023]
Abstract
Quantitative assessment of micro-structure of materials is of key importance in many fields including tissue engineering, biology, and dentistry. Micro-computed tomography (µ-CT) is an intensively used non-destructive technique. However, the acquisition parameters such as pixel size and rotation step may have significant effects on the obtained results. In this study, a set of tissue engineering scaffolds including examples of natural and synthetic polymers, and ceramics were analyzed. We comprehensively compared the quantitative results of µ-CT characterization using 15 acquisition scenarios that differ in the combination of the pixel size and rotation step. The results showed that the acquisition parameters could statistically significantly affect the quantified mean porosity, mean pore size, and mean wall thickness of the scaffolds. The effects are also practically important since the differences can be as high as 24% regarding the mean porosity in average, and 19.5 h and 166 GB regarding the characterization time and data storage per sample with a relatively small volume. This study showed in a quantitative manner the effects of such a wide range of acquisition scenarios on the final data, as well as the characterization time and data storage per sample. Herein, a clear picture of the effects of the pixel size and rotation step on the results is provided which can notably be useful to refine the practice of µ-CT characterization of scaffolds and economize the related resources.
Collapse
Affiliation(s)
- Ibrahim Fatih Cengiz
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joaquim Miguel Oliveira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Nommeots-Nomm A, Labbaf S, Devlin A, Todd N, Geng H, Solanki AK, Tang HM, Perdika P, Pinna A, Ejeian F, Tsigkou O, Lee PD, Esfahani MHN, Mitchell CA, Jones JR. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration. Acta Biomater 2017; 57:449-461. [PMID: 28457960 DOI: 10.1016/j.actbio.2017.04.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
A challenge in using bioactive melt-derived glass in bone regeneration is to produce scaffolds with interconnected pores while maintaining the amorphous nature of the glass and its associated bioactivity. Here we introduce a method for creating porous melt-derived bioactive glass foam scaffolds with low silica content and report in vitro and preliminary in vivo data. The gel-cast foaming process was adapted, employing temperature controlled gelation of gelatin, rather than the in situ acrylic polymerisation used previously. To form a 3D construct from melt derived glasses, particles must be fused via thermal processing, termed sintering. The original Bioglass® 45S5 composition crystallises upon sintering, altering its bioactivity, due to the temperature difference between the glass transition temperature and the crystallisation onset being small. Here, we optimised and compared scaffolds from three glass compositions, ICIE16, PSrBG and 13-93, which were selected due to their widened sintering windows. Amorphous scaffolds with modal pore interconnect diameters between 100-150µm and porosities of 75% had compressive strengths of 3.4±0.3MPa, 8.4±0.8MPa and 15.3±1.8MPa, for ICIE16, PSrBG and 13-93 respectively. These porosities and compressive strength values are within the range of cancellous bone, and greater than previously reported foamed scaffolds. Dental pulp stem cells attached to the scaffold surfaces during in vitro culture and were viable. In vivo, the scaffolds were found to regenerate bone in a rabbit model according to X-ray micro tomography imaging. STATEMENT OF SIGNIFICANCE This manuscript describes a new method for making scaffolds from bioactive glasses using highly bioactive glass compositions. The glass compositions have lower silica content that those that have been previously made into amorphous scaffolds and they have been designed to have similar network connectivity to that of the original (and commercially used) 45S5 Bioglass. The aim was to match Bioglass' bioactivity. The scaffolds retain the amorphous nature of bioactive glass while having an open pore structure and compressive strength similar to porous bone (the original 45S5 Bioglass crystallises during sintering, which can cause reduced bioactivity or instability). The new scaffolds showed unexpectedly rapid bone regeneration in a rabbit model.
Collapse
|
11
|
Geng H, Poologasundarampillai G, Todd N, Devlin-Mullin A, Moore KL, Golrokhi Z, Gilchrist JB, Jones E, Potter RJ, Sutcliffe C, O'Brien M, Hukins DWL, Cartmell S, Mitchell CA, Lee PD. Biotransformation of Silver Released from Nanoparticle Coated Titanium Implants Revealed in Regenerating Bone. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21169-21180. [PMID: 28581710 DOI: 10.1021/acsami.7b05150] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Antimicrobial silver nanoparticle coatings have attracted interest for reducing prosthetic joint infection. However, few studies report in vivo investigations of the biotransformation of silver nanoparticles within the regenerating tissue and its impact on bone formation. We present a longitudinal investigation of the osseointegration of silver nanoparticle-coated additive manufactured titanium implants in rat tibial defects. Correlative imaging at different time points using nanoscale secondary ion mass spectrometry, transmission electron microscopy (TEM), histomorphometry, and 3D X-ray microcomputed tomography provided quantitative insight from the nano- to macroscales. The quality and quantity of newly formed bone is comparable between the uncoated and silver coated implants. The newly formed bone demonstrates a trabecular morphology with bone being located at the implant surface, and at a distance, at two weeks. Nanoscale elemental mapping of the bone-implant interface showed that silver was present primarily in the osseous tissue and colocalized with sulfur. TEM revealed silver sulfide nanoparticles in the newly regenerated bone, presenting strong evidence that the previously in vitro observed biotransformation of silver to silver sulfide occurs in vivo.
Collapse
Affiliation(s)
- Hua Geng
- School of Materials, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K
- Research Complex at Harwell , Harwell OX11 0FA, U.K
| | - Gowsihan Poologasundarampillai
- School of Materials, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K
- Research Complex at Harwell , Harwell OX11 0FA, U.K
| | - Naomi Todd
- Centre for Molecular Biosciences (CMB), School of Biomedical Sciences, Ulster University , Coleraine BT52 1SA, Northern Ireland
| | - Aine Devlin-Mullin
- Centre for Molecular Biosciences (CMB), School of Biomedical Sciences, Ulster University , Coleraine BT52 1SA, Northern Ireland
| | - Katie L Moore
- School of Materials, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K
| | - Zahra Golrokhi
- Centre for Materials and Structures, School of Engineering, The University of Liverpool , Liverpool L69 3GH, U.K
| | | | - Eric Jones
- Centre for Materials and Structures, School of Engineering, The University of Liverpool , Liverpool L69 3GH, U.K
| | - Richard J Potter
- Centre for Materials and Structures, School of Engineering, The University of Liverpool , Liverpool L69 3GH, U.K
| | - Chris Sutcliffe
- Centre for Materials and Structures, School of Engineering, The University of Liverpool , Liverpool L69 3GH, U.K
| | - Marie O'Brien
- School of Materials, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K
| | - David W L Hukins
- Department of Mechanical Engineering, School of Engineering, University of Birmingham , Birmingham B15 2TT, U.K
| | - Sarah Cartmell
- School of Materials, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K
| | - Christopher A Mitchell
- Centre for Molecular Biosciences (CMB), School of Biomedical Sciences, Ulster University , Coleraine BT52 1SA, Northern Ireland
| | - Peter D Lee
- School of Materials, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K
- Research Complex at Harwell , Harwell OX11 0FA, U.K
| |
Collapse
|