1
|
Romano IR, D'Angeli F, Vicario N, Russo C, Genovese C, Lo Furno D, Mannino G, Tamburino S, Parenti R, Giuffrida R. Adipose-Derived Mesenchymal Stromal Cells: A Tool for Bone and Cartilage Repair. Biomedicines 2023; 11:1781. [PMID: 37509421 PMCID: PMC10376676 DOI: 10.3390/biomedicines11071781] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The osteogenic and chondrogenic differentiation ability of adipose-derived mesenchymal stromal cells (ASCs) and their potential therapeutic applications in bone and cartilage defects are reported in this review. This becomes particularly important when these disorders can only be poorly treated by conventional therapeutic approaches, and tissue engineering may represent a valuable alternative. Being of mesodermal origin, ASCs can be easily induced to differentiate into chondrocyte-like and osteocyte-like elements and used to repair damaged tissues. Moreover, they can be easily harvested and used for autologous implantation. A plethora of ASC-based strategies are being developed worldwide: they include the transplantation of freshly harvested cells, in vitro expanded cells or predifferentiated cells. Moreover, improving their positive effects, ASCs can be implanted in combination with several types of scaffolds that ensure the correct cell positioning; support cell viability, proliferation and migration; and may contribute to their osteogenic or chondrogenic differentiation. Examples of these strategies are described here, showing the enormous therapeutic potential of ASCs in this field. For safety and regulatory issues, most investigations are still at the experimental stage and carried out in vitro and in animal models. Clinical applications have, however, been reported with promising results and no serious adverse effects.
Collapse
Affiliation(s)
- Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D'Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Carlo Genovese
- Faculty of Medicine and Surgery, "Kore" University of Enna, 94100 Enna, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Serena Tamburino
- Chi.Pla Chirurgia Plastica, Via Suor Maria Mazzarello, 54, 95128 Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
2
|
Kouthouridis S, Robson E, Hartung A, Raha S, Zhang B. Se(XY) matters: the importance of incorporating sex in microphysiological models. Trends Biotechnol 2022; 40:1284-1298. [PMID: 35597689 DOI: 10.1016/j.tibtech.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 01/21/2023]
Abstract
The development of microphysiological models is currently at the forefront of preclinical research. Although these 3D tissue models are being developed to mimic physiological organ function and diseases, which are often sexually dimorphic, sex is usually neglected as a biological variable. For decades, national research agencies have required government-funded clinical trials to include both male and female participants as a means of eliminating male bias. However, this is not the case in preclinical trials, which have been shown to favor male rodents in animal studies and male cell types in in vitro studies. In this Opinion, we highlight the importance of considering sex as a biological variable and outline five approaches for incorporating sex-specific features into current microphysiological models.
Collapse
Affiliation(s)
- Sonya Kouthouridis
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Eleanor Robson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Alicia Hartung
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Sandeep Raha
- Department of Pediatrics, McMaster University, Hamilton, ON, L8S 4L8, Canada; Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada.
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
3
|
Rahman G, Frazier TP, Gimble JM, Mohiuddin OA. The Emerging Use of ASC/Scaffold Composites for the Regeneration of Osteochondral Defects. Front Bioeng Biotechnol 2022; 10:893992. [PMID: 35845419 PMCID: PMC9280640 DOI: 10.3389/fbioe.2022.893992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Articular cartilage is composed of chondrocytes surrounded by a porous permeable extracellular matrix. It has a limited spontaneous healing capability post-injury which, if left untreated, can result in severe osteochondral disease. Currently, osteochondral (OC) defects are treated by bone marrow stimulation, artificial joint replacement, or transplantation of bone, cartilage, and periosteum, while autologous osteochondral transplantation is also an option; it carries the risk of donor site damage and is limited only to the treatment of small defects. Allografts may be used for larger defects; however, they have the potential to elicit an immune response. A possible alternative solution to treat osteochondral diseases involves the use of stromal/stem cells. Human adipose-derived stromal/stem cells (ASCs) can differentiate into cartilage and bone cells. The ASC can be combined with both natural and synthetic scaffolds to support cell delivery, growth, proliferation, migration, and differentiation. Combinations of both types of scaffolds along with ASCs and/or growth factors have shown promising results for the treatment of OC defects based on in vitro and in vivo experiments. Indeed, these findings have translated to several active clinical trials testing the use of ASC-scaffold composites on human subjects. The current review critically examines the literature describing ASC-scaffold composites as a potential alternative to conventional therapies for OC tissue regeneration.
Collapse
Affiliation(s)
- Gohar Rahman
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | | | - Omair A. Mohiuddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
4
|
Lipreri MV, Baldini N, Graziani G, Avnet S. Perfused Platforms to Mimic Bone Microenvironment at the Macro/Milli/Microscale: Pros and Cons. Front Cell Dev Biol 2022; 9:760667. [PMID: 35047495 PMCID: PMC8762164 DOI: 10.3389/fcell.2021.760667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022] Open
Abstract
As life expectancy increases, the population experiences progressive ageing. Ageing, in turn, is connected to an increase in bone-related diseases (i.e., osteoporosis and increased risk of fractures). Hence, the search for new approaches to study the occurrence of bone-related diseases and to develop new drugs for their prevention and treatment becomes more pressing. However, to date, a reliable in vitro model that can fully recapitulate the characteristics of bone tissue, either in physiological or altered conditions, is not available. Indeed, current methods for modelling normal and pathological bone are poor predictors of treatment outcomes in humans, as they fail to mimic the in vivo cellular microenvironment and tissue complexity. Bone, in fact, is a dynamic network including differently specialized cells and the extracellular matrix, constantly subjected to external and internal stimuli. To this regard, perfused vascularized models are a novel field of investigation that can offer a new technological approach to overcome the limitations of traditional cell culture methods. It allows the combination of perfusion, mechanical and biochemical stimuli, biological cues, biomaterials (mimicking the extracellular matrix of bone), and multiple cell types. This review will discuss macro, milli, and microscale perfused devices designed to model bone structure and microenvironment, focusing on the role of perfusion and encompassing different degrees of complexity. These devices are a very first, though promising, step for the development of 3D in vitro platforms for preclinical screening of novel anabolic or anti-catabolic therapeutic approaches to improve bone health.
Collapse
Affiliation(s)
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Biomedical Science and Technologies Lab, IRCSS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gabriela Graziani
- Laboratory for NanoBiotechnology (NaBi), IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Singh YP, Moses JC, Bhardwaj N, Mandal BB. Overcoming the Dependence on Animal Models for Osteoarthritis Therapeutics - The Promises and Prospects of In Vitro Models. Adv Healthc Mater 2021; 10:e2100961. [PMID: 34302436 DOI: 10.1002/adhm.202100961] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/10/2021] [Indexed: 12/19/2022]
Abstract
Osteoarthritis (OA) is a musculoskeletal disease characterized by progressive degeneration of osteochondral tissues. Current treatment is restricted to the reduction of pain and loss of function of the joint. To better comprehend the OA pathophysiological conditions, several models are employed, however; there is no consensus on a suitable model. In this review, different in vitro models being developed for possible therapeutic intervention of OA are outlined. Herein, various in vitro OA models starting from 2D model, co-culture model, 3D models, dynamic culture model to advanced technologies-based models such as 3D bioprinting, bioassembly, organoids, and organ-on-chip-based models are discussed with their advantages and disadvantages. Besides, different growth factors, cytokines, and chemicals being utilized for induction of OA condition are reviewed in detail. Furthermore, there is focus on scrutinizing different molecular and possible therapeutic targets for better understanding the mechanisms and OA therapeutics. Finally, the underlying challenges associated with in vitro models are discussed followed by future prospective. Taken together, a comprehensive overview of in vitro OA models, factors to induce OA-like conditions, and intricate molecular targets with the potential to develop personalized osteoarthritis therapeutics in the future with clinical translation is provided.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Joseph Christakiran Moses
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Nandana Bhardwaj
- Department of Science and Mathematics Indian Institute of Information Technology Guwahati Bongora Guwahati Assam 781015 India
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
- Centre for Nanotechnology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
- School of Health Sciences and Technology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| |
Collapse
|
6
|
Samvelyan HJ, Hughes D, Stevens C, Staines KA. Models of Osteoarthritis: Relevance and New Insights. Calcif Tissue Int 2021; 109:243-256. [PMID: 32062692 PMCID: PMC8403120 DOI: 10.1007/s00223-020-00670-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/05/2020] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA) is a progressive and disabling musculoskeletal disease affecting millions of people and resulting in major healthcare costs worldwide. It is the most common form of arthritis, characterised by degradation of the articular cartilage, formation of osteophytes, subchondral sclerosis, synovial inflammation and ultimate loss of joint function. Understanding the pathogenesis of OA and its multifactorial aetiology will lead to the development of effective treatments, which are currently lacking. Two-dimensional (2D) in vitro tissue models of OA allow affordable, high-throughput analysis and stringent control over specific variables. However, they are linear in fashion and are not representative of physiological conditions. Recent in vitro studies have adopted three-dimensional (3D) tissue models of OA, which retain the advantages of 2D models and are able to mimic physiological conditions, thereby allowing investigation of additional variables including interactions between the cells and their surrounding extracellular matrix. Numerous spontaneous and induced animal models are used to reproduce the onset and monitor the progression of OA based on the aetiology under investigation. This therefore allows elucidation of the pathogenesis of OA and will ultimately enable the development of novel and specific therapeutic interventions. This review summarises the current understanding of in vitro and in vivo OA models in the context of disease pathophysiology, classification and relevance, thus providing new insights and directions for OA research.
Collapse
Affiliation(s)
| | - David Hughes
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, UK
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, UK
| | - Katherine Ann Staines
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, UK.
| |
Collapse
|
7
|
Murata D, Fujimoto R, Nakayama K. Osteochondral Regeneration Using Adipose Tissue-Derived Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:ijms21103589. [PMID: 32438742 PMCID: PMC7279226 DOI: 10.3390/ijms21103589] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is a major joint disease that promotes locomotor deficiency during the middle- to old-age, with the associated disability potentially decreasing quality of life. Recently, surgical strategies to reconstruct both articular cartilage and subchondral bone for OA have been diligently investigated for restoring joint structure and function. Adipose tissue-derived mesenchymal stem cells (AT-MSCs), which maintain pluripotency and self-proliferation ability, have recently received attention as a useful tool to regenerate osteocartilage for OA. In this review, several studies were described related to AT-MSC spheroids, with scaffold and scaffold-free three-dimensional (3D) constructs produced using “mold” or “Kenzan” methods for osteochondral regeneration. First, several examples of articular cartilage regeneration using AT-MSCs were introduced. Second, studies of osteochondral regeneration (not only cartilage but also subchondral bone) using AT-MSCs were described. Third, examples were presented wherein spheroids were produced using AT-MSCs for cartilage regeneration. Fourth, osteochondral regeneration following autologous implantation of AT-MSC scaffold-free 3D constructs, fabricated using the “mold” or “Kenzan” method, was considered. Finally, prospects of osteochondral regeneration by scaffold-free 3D constructs using AT-MSC spheroids were discussed.
Collapse
Affiliation(s)
- Daiki Murata
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Honjo-machi, Saga 840-8502, Japan; (R.F.); (K.N.)
- Correspondence: ; Tel.: +81-952-28-8480
| | - Ryota Fujimoto
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Honjo-machi, Saga 840-8502, Japan; (R.F.); (K.N.)
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga 849-8501, Japan
| | - Koichi Nakayama
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Honjo-machi, Saga 840-8502, Japan; (R.F.); (K.N.)
| |
Collapse
|
8
|
Song Y, Lin K, He S, Wang C, Zhang S, Li D, Wang J, Cao T, Bi L, Pei G. Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin. Int J Nanomedicine 2018; 13:505-523. [PMID: 29416332 PMCID: PMC5790108 DOI: 10.2147/ijn.s152105] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background and aim As a newly emerging three-dimensional (3D) printing technology, low-temperature robocasting can be used to fabricate geometrically complex ceramic scaffolds at low temperatures. Here, we aimed to fabricate 3D printed ceramic scaffolds composed of nano-biphasic calcium phosphate (BCP), polyvinyl alcohol (PVA), and platelet-rich fibrin (PRF) at a low temperature without the addition of toxic chemicals. Methods Corresponding nonprinted scaffolds were prepared using a freeze-drying method. Compared with the nonprinted scaffolds, the printed scaffolds had specific shapes and well-connected internal structures. Results The incorporation of PRF enabled both the sustained release of bioactive factors from the scaffolds and improved biocompatibility and biological activity toward bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. Additionally, the printed BCP/PVA/PRF scaffolds promoted significantly better BMSC adhesion, proliferation, and osteogenic differentiation in vitro than the printed BCP/PVA scaffolds. In vivo, the printed BCP/PVA/PRF scaffolds induced a greater extent of appropriate bone formation than the printed BCP/PVA scaffolds and nonprinted scaffolds in a critical-size segmental bone defect model in rabbits. Conclusion These experiments indicate that low-temperature robocasting could potentially be used to fabricate 3D printed BCP/PVA/PRF scaffolds with desired shapes and internal structures and incorporated bioactive factors to enhance the repair of segmental bone defects.
Collapse
Affiliation(s)
- Yue Song
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kaifeng Lin
- Second Department of Orthopedics and Traumatology, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, China
| | - Shu He
- Department of Orthopedics, Xi'an Hong Hui Hospital, Xi'an, China
| | - Chunmei Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shuaishuai Zhang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Donglin Li
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jimeng Wang
- Department of Orthopedics, The 251st Hospital of Chinese PLA, Zhangjiakou, China
| | - Tianqing Cao
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Long Bi
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Guoxian Pei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
9
|
Pereira DR, Reis RL, Oliveira JM. Layered Scaffolds for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:193-218. [DOI: 10.1007/978-3-319-76711-6_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Oryan A, Sharifi P, Moshiri A, Silver IA. The role of three-dimensional pure bovine gelatin scaffolds in tendon healing, modeling, and remodeling: an in vivo investigation with potential clinical value. Connect Tissue Res 2017; 58:424-437. [PMID: 27662266 DOI: 10.1080/03008207.2016.1238468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM OF THE STUDY Large tendon defects involving extensive tissue loss present complex clinical problems. Surgical reconstruction of such injuries is normally performed by transplanting autogenous and allogenous soft tissues that are expected to remodel to mimic a normal tendon. However, the use of grafts has always been associated with significant limitations. Tissue engineering employing artificial scaffolds may provide acceptable alternatives. Gelatin is a hydrolyzed form of collagen that is bioactive, biodegradable, and biocompatible. The present study has investigated the suitability of gelatin scaffold for promoting healing of a large tendon-defect model in rabbits. MATERIALS AND METHODS An experimental model of a large tendon defect was produced by partial excision of the Achilles tendon of the left hind leg in adult rabbits. To standardize and stabilize the length of the tendon defect a modified Kessler core suture was anchored in the sectioned tendon ends. The defects were either left untreated or filled with three-dimensional gelatin scaffold. Before euthanasia 60 days after injury, the progress of healing was evaluated clinically. Samples of healing tendon were harvested at autopsy and evaluated by gross, histopathologic, scanning, and transmission electron microscopy, and by biomechanical testing. RESULTS The treated animals showed superior weight-bearing and physical activity compared with those untreated, while frequency of peritendinous adhesions around the healing site was reduced. The gelatin scaffold itself was totally degraded and replaced by neo-tendon that morphologically had significantly greater numbers, diameters, density, and maturation of collagen fibrils, fibers, and fiber bundles than untreated tendon scar tissue. It also had mechanically higher ultimate load, yield load, stiffness, maximum stress and elastic modulus, when compared to the untreated tendons. CONCLUSION Gelatin scaffold may be a valuable option in surgical reconstruction of large tendon defects.
Collapse
Affiliation(s)
- Ahmad Oryan
- a Department of Pathology, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Pardis Sharifi
- a Department of Pathology, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Ali Moshiri
- b RAZI Drug Research Center , Iran University of Medical Sciences , Tehran , Iran
| | - Ian A Silver
- c Department of Anatomy, Center for Comparative and Clinical Anatomy , School of Veterinary Science , Bristol , UK
| |
Collapse
|
11
|
Topoluk N, Hawkins R, Tokish J, Mercuri J. Amniotic Mesenchymal Stromal Cells Exhibit Preferential Osteogenic and Chondrogenic Differentiation and Enhanced Matrix Production Compared With Adipose Mesenchymal Stromal Cells. Am J Sports Med 2017; 45:2637-2646. [PMID: 28541092 PMCID: PMC5832055 DOI: 10.1177/0363546517706138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Therapeutic efficacy of various mesenchymal stromal cell (MSC) types for orthopaedic applications is currently being investigated. While the concept of MSC therapy is well grounded in the basic science of healing and regeneration, little is known about individual MSC populations in terms of their propensity to promote the repair and/or regeneration of specific musculoskeletal tissues. Two promising MSC sources, adipose and amnion, have each demonstrated differentiation and extracellular matrix (ECM) production in the setting of musculoskeletal tissue regeneration. However, no study to date has directly compared the differentiation potential of these 2 MSC populations. PURPOSE To compare the ability of human adipose- and amnion-derived MSCs to undergo osteogenic and chondrogenic differentiation. STUDY DESIGN Controlled laboratory study. METHODS MSC populations from the human term amnion were quantified and characterized via cell counting, histologic assessment, and flow cytometry. Differentiation of these cells in comparison to commercially purchased human adipose-derived mesenchymal stromal cells (hADSCs) in the presence and absence of differentiation media was evaluated via reverse transcription polymerase chain reaction (PCR) for bone and cartilage gene transcript markers and histology/immunohistochemistry to examine ECM production. Analysis of variance and paired t tests were performed to compare results across all cell groups investigated. RESULTS The authors confirmed that the human term amnion contains 2 primary cell types demonstrating MSC characteristics-(1) human amniotic epithelial cells (hAECs) and (2) human amniotic mesenchymal stromal cells (hAMSCs)-and each exhibited more than 90% staining for MSC surface markers (CD90, CD105, CD73). Average viable hAEC and hAMSC yields at harvest were 2.3 × 106 ± 3.7 × 105 and 1.6 × 106 ± 4.7 × 105 per milliliter of amnion, respectively. As well, hAECs and hAMSCs demonstrated significantly greater osteocalcin ( P = .025), aggrecan ( P < .0001), and collagen type 2 ( P = .044) gene expression compared with hADSCs, respectively, after culture in differentiation medium. Moreover, both hAECs and hAMSCs produced significantly greater quantities of mineralized ( P < .0001) and cartilaginous ( P = .0004) matrix at earlier time points compared with hADSCs when cultured under identical osteogenic and chondrogenic differentiation conditions, respectively. CONCLUSION Amnion-derived MSCs demonstrate a greater differentiation potential toward bone and cartilage compared with hADSCs. CLINICAL RELEVANCE Amniotic MSCs may be the source of choice in the regenerative treatment of bone or osteochondral musculoskeletal disease. They show significantly higher yields and better differentiation toward these tissues than MSCs derived from adipose.
Collapse
Affiliation(s)
| | | | | | - Jeremy Mercuri
- Address correspondence to Jeremy J. Mercuri, PhD, Clemson University, 313 Rhodes Engineering Research Center, Clemson, SC 29634, USA ()
| |
Collapse
|
12
|
Comblain F, Rocasalbas G, Gauthier S, Henrotin Y. Chitosan: A promising polymer for cartilage repair and viscosupplementation. Biomed Mater Eng 2017; 28:S209-S215. [PMID: 28372297 DOI: 10.3233/bme-171643] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Osteoarthritis (OA) is a painful, degenerative and inflammatory disease that affects the entire synovial joints. Nowadays, no cure exists, and the pharmacological treatments are limited to symptoms alleviation. There is a need for a new efficient and safe treatment. Viscosupplementation is a process that aims to restore the normal rheological properties of synovial fluid. For the past years, hyaluronic acid was usually used but this molecule has some limitations including the short residency time in joint cavity. Recently, in vitro studies have suggested that chitosan could promote the expression of cartilage matrix components and reduce inflammatory and catabolic mediator's production by chondrocytes. In vivo, chitosan prevented cartilage degradation and synovial membrane inflammation in OA induced rabbit model. Several studies have also shown that chitosan could induce chondrogenic differentiation of mesenchymal stem cells. Therefore, chitosan is an interesting polymer to design scaffold and hydrogel for cartilage lesion repair, cells transplantation, sustained drug release and viscosupplementation.
Collapse
Affiliation(s)
- Fanny Comblain
- Bone and Cartilage Research Unit, Arthropôle Liège, University of Liège, Liège, Belgium
| | | | | | - Yves Henrotin
- Bone and Cartilage Research Unit, Arthropôle Liège, University of Liège, Liège, Belgium.,Physical Therapy & Rehabilitation Department, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
| |
Collapse
|