1
|
Spasova M, Stoyanova N, Stoilova O. Electrospun Materials Based on Cellulose Acetate Loaded with Rosmarinic Acid with Antioxidant and Antifungal Properties. Biomimetics (Basel) 2024; 9:152. [PMID: 38534837 DOI: 10.3390/biomimetics9030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Fibrous cellulose acetate (CA) materials loaded with rosmarinic acid (RA) were successfully created by one-pot electrospinning. In order to improve the water solubility of the polyphenolic acid and to facilitate its release from the fibrous materials, the non-ionic water-soluble polyethylene glycol (PEG) was added. Detailed characterization of the fabricated fibrous CA/RA and CA/PEG/RA materials was performed using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), UV-Vis spectroscopy and water contact angle analysis. The optimal ratio between CA, RA and PEG for preparation of defect-free and uniform fibers was accomplished by varying their concentrations. Furthermore, the incorporation of the PEG improved the hydrophilicity and wettability of the fibrous CA materials. Moreover, PEG facilitated the RA release and over 360 min, the amount released from fibrous CA/PEG/RA fibers was 91%, while that released from CA/RA materials was 53%. Both of the RA-containing fibrous materials, with and without PEG, manifested high antioxidant activity as determined by the DPPH free radical-scavenging method. In addition, the electrospun CA/PEG/RA materials displayed good antifungal activity against C. albicans. These features make the fibrous CA/PEG/RA materials promising candidates for treatment of wound infections.
Collapse
Affiliation(s)
- Mariya Spasova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| | - Nikoleta Stoyanova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| | - Olya Stoilova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| |
Collapse
|
2
|
Jaber S, Nemska V, Iliev I, Ivanova E, Foteva T, Georgieva N, Givechev I, Tanev D, Naydenova E, Danalev D. Synthesis, antiproliferative and antimicrobial activities of (KLAKLAK) 2-NH 2 analogue containing nor-Leu and its conjugates with a second pharmacophore. BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2022.2162965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Sirine Jaber
- Department of Biotechnology, Faculty of Chemical and System Engineering, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Veronica Nemska
- Department of Biotechnology, Faculty of Chemical and System Engineering, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Ivan Iliev
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Elena Ivanova
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tsvetelina Foteva
- Department of Biotechnology, Faculty of Chemical and System Engineering, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Nelly Georgieva
- Department of Biotechnology, Faculty of Chemical and System Engineering, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | | | | | - Emilia Naydenova
- Department of Organic Chemistry, Faculty of Chemical Technologies, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Dancho Danalev
- Department of Biotechnology, Faculty of Chemical and System Engineering, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| |
Collapse
|
3
|
Stoyanova N, Nachev N, Spasova M. Innovative Bioactive Nanofibrous Materials Combining Medicinal and Aromatic Plant Extracts and Electrospinning Method. MEMBRANES 2023; 13:840. [PMID: 37888012 PMCID: PMC10608671 DOI: 10.3390/membranes13100840] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Since antiquity, humans have known about plants as a medicinal cure. Recently, plant extracts are attracting more attention as a result of their natural origin and wide range of desirable features. Nanotechnology's progress and innovations enable the production of novel materials with enhanced properties for a broad range of applications. Electrospinning is a cutting-edge, flexible and economical technique that allows the creation of continuous nano- and microfibrous membranes with tunable structure, characteristics and functionalities. Electrospun fibrous materials are used in drug delivery, tissue engineering, wound healing, cosmetics, food packaging, agriculture and other fields due to their useful properties such as a large surface area to volume ratio and high porosity with small pore size. By encapsulating plant extracts in a suitable polymer matrix, electrospinning can increase the medicinal potential of these extracts, thus improving their bioavailability and maintaining the required concentration of bioactive compounds at the target site. Moreover, the created hybrid fibrous materials could possess antimicrobial, antifungal, antitumor, anti-inflammatory and antioxidant properties that make the obtained structures attractive for biomedical and pharmaceutical applications. This review summarizes the known approaches that have been applied to fabricate fibrous materials loaded with diverse plant extracts by electrospinning. Some potential applications of the extract-containing micro- and nanofibers such as wound dressings, drug delivery systems, scaffolds for tissue engineering and active food packaging systems are discussed.
Collapse
Affiliation(s)
| | | | - Mariya Spasova
- Laboratory of Bioactive Polymers (LBAP), Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria; (N.S.); (N.N.)
| |
Collapse
|
4
|
Spasova M, Stoyanova N, Nachev N, Ignatova M, Manolova N, Rashkov I, Georgieva A, Toshkova R, Markova N. Innovative Fibrous Materials Loaded with 5-Nitro-8-hydroxyquinoline via Electrospinning/Electrospraying Demonstrate Antioxidant, Antimicrobial and Anticancer Activities. Antioxidants (Basel) 2023; 12:1243. [PMID: 37371973 DOI: 10.3390/antiox12061243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
A new type of fibrous mat based on a cellulose derivative-cellulose acetate (CA) or CA and water-soluble polymers (polyvinylpyrrolidone, PVP or poly(vinyl alcohol), PVA)-loaded with the model drug 5-nitro-8-hydroxyquinoline (5N) was fabricated via electrospinning or electrospinning in conjunction with electrospraying. Scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FTIR), water contact angle measurements and ultraviolet-visible spectroscopy (UV-Vis) were used for the complex characterization of the obtained novel material. The decoration of CA fibers with a water-soluble polymer containing the drug resulted in the facilitation of wetting and fast drug release. The 5N-containing fibrous material showed antioxidant activity. Moreover, the proposed materials' antibacterial and antifungal properties were tested against S. aureus, E. coli, P. aeruginosa and C. albicans. Well-distinguished, sterile zones with diameters above 3.5 cm were observed around all 5N-containing mats. The mats' cytotoxicity toward HeLa carcinoma cells and normal mouse BALB/c 3T3 fibroblasts was assessed. The 5N-in-CA, PVP,5N-on-(5N-in-CA) and PVA,5N-on-(5N-in-CA) fibrous mats possessed anticancer efficacies and much lower levels of toxicity against normal cells. Therefore, the as-created novel electrospun materials, which are based on polymers loaded with the drug 5N via electrospinning/electrospraying, can potentially be applied for topical wound healing and for local cancer therapy.
Collapse
Affiliation(s)
- Mariya Spasova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria
| | - Nikoleta Stoyanova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria
| | - Nasko Nachev
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria
| | - Milena Ignatova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria
| | - Nevena Manolova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria
| | - Ani Georgieva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Akad. G. Bonchev St, bl. 25, BG-1113 Sofia, Bulgaria
| | - Reneta Toshkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Akad. G. Bonchev St, bl. 25, BG-1113 Sofia, Bulgaria
| | - Nadya Markova
- Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St, bl. 26, BG-1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Stoyanova N, Spasova M, Manolova N, Rashkov I, Kamenova-Nacheva M, Staleva P, Tavlinova-Kirilova M. Electrospun PLA-Based Biomaterials Loaded with Melissa officinalis Extract with Strong Antioxidant Activity. Polymers (Basel) 2023; 15:1070. [PMID: 36904311 PMCID: PMC10007429 DOI: 10.3390/polym15051070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
In the present study, the plant extract Melissa officinalis (M. officinalis) was successfully loaded in polymer fibrous materials on the basis of a biodegradable polyester-poly(L-lactide) (PLA) and biocompatible polyether-polyethylene glycol (PEG) by applying the electrospinning method. The optimal process conditions for the preparation of hybrid fibrous materials were found. The extract concentration was varied-0, 5 or 10 wt% in respect of the polymer weight, in order to study its influence on the morphology and the physico-chemical properties of the obtained electrospun materials. All the prepared fibrous mats were composed of defect-free fibers. The mean fiber diameters of the PLA, PLA/M. officinalis (5 wt%) and PLA/M. officinalis (10 wt%) were 1370 ± 220 nm, 1398 ± 233 nm and 1506 ± 242 nm, respectively. The incorporation of the M. officinalis into the fibers resulted in slight increase of the fiber diameters and in increase of the water contact angle values to 133°. The presence of the polyether in the fabricated fibrous material assisted the wetting of the materials imparting them with hydrophilicity (the value of the water contact angle become 0°). Extract-containing fibrous materials displayed strong antioxidant activity as determined by the 2,2-diphenyl-1-picryl-hydrazyl-hydrate free radical method. The DPPH solution color changed to yellow and the absorbance of the DPPH radical dropped by 88.7% and 91% after being in contact with PLA/M. officinalis and PLA/PEG/M. officinalis mats, respectively. These features revealed the M. officinalis-containing fibrous biomaterials promising candidates for pharmaceutical, cosmetic and biomedical use.
Collapse
Affiliation(s)
- Nikoleta Stoyanova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria
| | - Mariya Spasova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria
| | - Nevena Manolova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria
| | - Mariana Kamenova-Nacheva
- Laboratory Organic Synthesis and Stereochemistry, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 9, BG-1113 Sofia, Bulgaria
- Laboratory for Extraction of Natural Products and Synthesis of Bioactive Compounds, Research and Development and Innovation Consortium, Sofia Tech Park JSC, 111 Tsarigradsko Shose blvd., BG-1784 Sofia, Bulgaria
| | - Plamena Staleva
- Laboratory Organic Synthesis and Stereochemistry, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 9, BG-1113 Sofia, Bulgaria
- Laboratory for Extraction of Natural Products and Synthesis of Bioactive Compounds, Research and Development and Innovation Consortium, Sofia Tech Park JSC, 111 Tsarigradsko Shose blvd., BG-1784 Sofia, Bulgaria
| | - Maya Tavlinova-Kirilova
- Laboratory Organic Synthesis and Stereochemistry, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 9, BG-1113 Sofia, Bulgaria
| |
Collapse
|
6
|
Electrospun Core–Sheath Nanofibers with Variable Shell Thickness for Modifying Curcumin Release to Achieve a Better Antibacterial Performance. Biomolecules 2022; 12:biom12081057. [PMID: 36008951 PMCID: PMC9406017 DOI: 10.3390/biom12081057] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
The inefficient use of water-insoluble drugs is a major challenge in drug delivery systems. Core–sheath fibers with various shell thicknesses based on cellulose acetate (CA) were prepared by the modified triaxial electrospinning for the controlled and sustained release of the water-insoluble Chinese herbal active ingredient curcumin. The superficial morphology and internal structure of core–sheath fibers were optimized by increasing the flow rate of the middle working fluid. Although the prepared fibers were hydrophobic initially, the core–sheath structure endowed fibers with better water retention property than monolithic fibers. Core–sheath fibers had flatter sustained-release profiles than monolithic fibers, especially for thick shell layers, which had almost zero-order release for almost 60 h. The shell thickness and sustained release of drugs brought about a good antibacterial effect to materials. The control of flow rate during fiber preparation is directly related to the shell thickness of core–sheath fibers, and the shell thickness directly affects the controlled release of drugs. The fiber preparation strategy for the precise control of core–sheath structure in this work has remarkable potential for modifying water-insoluble drug release and improving its antibacterial performance.
Collapse
|
7
|
Yazdi MK, Zare M, Khodadadi A, Seidi F, Sajadi SM, Zarrintaj P, Arefi A, Saeb MR, Mozafari M. Polydopamine Biomaterials for Skin Regeneration. ACS Biomater Sci Eng 2022; 8:2196-2219. [PMID: 35649119 DOI: 10.1021/acsbiomaterials.1c01436] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Designing biomaterials capable of biomimicking wound healing and skin regeneration has been receiving increasing attention recently. Some biopolymers behave similarly to the extracellular matrix (ECM), supporting biointerfacial adhesion and intrinsic cellular interactions. Polydopamine (PDA) is a natural bioadhesive and bioactive polymer that endows high chemical versatility, making it an exciting candidate for a wide range of biomedical applications. Moreover, biomaterials based on PDA and its derivatives have near-infrared (NIR) absorption, excellent biocompatibility, intrinsic antioxidative activity, antibacterial activity, and cell affinity. PDA can regulate cell behavior by controlling signal transduction pathways. It governs the focal adhesion behavior of cells at the biomaterials interface. These features make melanin-like PDA a fascinating biomaterial for wound healing and skin regeneration. This paper overviews PDA-based biomaterials' synthesis, properties, and interactions with biological entities. Furthermore, the utilization of PDA nano- and microstructures as a constituent of wound-dressing formulations is highlighted.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran 141663-4793, Iran
| | - Ali Khodadadi
- Department of Internal Medicine, School of Medicine, Gonabad University of Medical Sciences, Gonabad 96914, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University─Erbil, Erbil, Kurdistan Region 44001, Iraq.,Department of Phytochemistry, SRC, Soran University, Soran, Kurdistan Regional Government 44008, Iraq
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | - Ahmad Arefi
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences,Tehran 144961-4535, Iran
| |
Collapse
|
8
|
Mancipe JMA, Lobianco FA, Dias ML, da Silva Moreira Thiré RM. Electrospinning: New Strategies for the Treatment of Skin Melanoma. Mini Rev Med Chem 2022; 22:564-578. [PMID: 34254914 DOI: 10.2174/1389557521666210712111809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/25/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
Recent studies have shown a significant growth of skin cancer cases in northern regions of the world, in which its presence was not common. Skin cancer is one of the cancers that mostly affects the world's population, ranking fifth in studies conducted in the United States (USA). Melanoma is cancer that has the highest number of deaths worldwide since it is the most resistant skin cancer to current treatments. This is why alternatives for its treatment has been investigated considering nanomedicine concepts. This study approaches the role of this field in the creation of promising electrospun devices, composed of nanoparticles and nanofibers, among other structures, capable of directing and/or loading active drugs and/or materials with the objective of inhibiting the growth of melanoma cells or even eliminating those cells.
Collapse
Affiliation(s)
- Javier Mauricio Anaya Mancipe
- Programa de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro - PEMM/COPPE/ UFRJ, Rio de Janeiro, RJ. Brazil
- Instituto de Macromolécula Professora Eloisa Mano, Universidade Federal do Rio de Janeiro - IMA/UFRJ, Rio de Janeiro, RJ. Brazil
| | - Franz Acker Lobianco
- Programa de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro - PEMM/COPPE/ UFRJ, Rio de Janeiro, RJ. Brazil
| | - Marcos Lopes Dias
- Instituto de Macromolécula Professora Eloisa Mano, Universidade Federal do Rio de Janeiro - IMA/UFRJ, Rio de Janeiro, RJ. Brazil
| | | |
Collapse
|
9
|
Alharthi S, Ziora ZM, Moyle PM. Optimized protocols for assessing libraries of poorly soluble sortase A inhibitors for antibacterial activity against medically-relevant bacteria, toxicity and enzyme inhibition. Bioorg Med Chem 2021; 52:116527. [PMID: 34839159 DOI: 10.1016/j.bmc.2021.116527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Increasing antimicrobial resistance is a major global health concern. Conventional antibiotics apply selection pressures, which promote the accumulation of resistant microbes. Anti-virulence strategies, in contrast, are less potent antimicrobials, but are less likely to select for resistance, can be combined with existing antibiotics to improve their activity, and in some cases can overcome antimicrobial resistance towards other antimicrobials. Sortase A inhibitors (SrtAIs) represent an exciting example of this class; however, many reported examples demonstrate poor water solubility, which complicates their biological assessment and activity. This includes reports that use antimicrobial concentrations of organic solvents or conditions that fail to solubilise these compounds for minimal inhibitory concentration (MIC) assessments. Herein, we report the first study to optimise screening processes for a library of prospective SrtAIs (trans-chalcone (TC), berberine (BR), curcumin (CUR), and quercetin (QC)), including comparative assessment of the effects of various co-solvent concentrations, along with comparative assessment of their antimicrobial activities against multiple disease relevant bacterial strains (methicillin-sensitive and resistant S. aureus, E. coli, and P. aeruginosa), inhibition of the sortase A enzyme, and toxicity towards mammalian cells (HEK-293), using these optimised conditions. Optimal solubility with minimal effect on bacterial viability was observed in the presence of 5% (v/v) dimethyl sulfoxide (DMSO)-Mueller-Hinton Broth. Three antimicrobial susceptibility tests (broth microdilution, agar dilution, and disk diffusion) were assessed for their ability to accurately determine minimal inhibitory concentration (MIC) data for each SrtAI. Broth microdilution and agar dilution were both effective; however, the broth microdilution assay required the addition of a colorimetric metabolic indicator (resazurin) to enable simple and reliable MIC determination due to the development of precipitants over time. In contrast, disk diffusion did not provide reliable zone of inhibition data. Identical MIC data was observed with methicillin-sensitive and -resistant S. aureus (MRSA; ATCC43300), with lower potency activity against E. coli and P. aeruginosa. Under these conditions, TC and CUR demonstrated significant toxicity towards human embryonic kidney (HEK-293) cells, with QC showing less toxicity and BR limited-to-no toxicity at its MIC. Overall, the findings of this work provide optimised processes, which will prove useful for the study of other poorly soluble antimicrobial agents and SrtAIs. The obtained data suggests that BR should be considered in preference to the other SrtAIs for the development of new antimicrobial formulations, based on its superior antimicrobial and SrtA inhibition potency, and greatly reduced toxicity.
Collapse
Affiliation(s)
- Sitah Alharthi
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba 4102, Queensland, Australia
| | - Zyta Maria Ziora
- Institute for Molecular Bioscience, the University of Queensland, St Lucia 4072, Queensland, Australia
| | - Peter Michael Moyle
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba 4102, Queensland, Australia.
| |
Collapse
|
10
|
Jaber S, Nemska V, Iliev I, Ivanova E, Foteva T, Georgieva N, Givechev I, Naydenova E, Karadjova V, Danalev D. Synthesis and Biological Studies on (KLAKLAK) 2-NH 2 Analog Containing Unnatural Amino Acid β-Ala and Conjugates with Second Pharmacophore. Molecules 2021; 26:7321. [PMID: 34885902 PMCID: PMC8658989 DOI: 10.3390/molecules26237321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
(1) Background: Peptides are good candidates for anticancer drugs due to their natural existence in the body and lack of secondary effects. (KLAKLAK)2 is an antimicrobial peptide that also shows good anticancer properties. (2) Methods: The Solid Phase Peptide Synthesis (Fmoc-strategy) was used for the synthesis of target molecules, analogs of (KLAKLAK)2-NH2. The purity of all compounds was monitored by HPLC, and their structures were proven using mass spectrometry. Cytotoxicity and antiproliferative effects were studied using 3T3 NRU and MTT tests, respectively. For determination of antimicrobial activity, the disc-diffusion method was used. Hydrolytic stability at three pH values, which mimic the physiological pH in the body, was investigated by means of the HPLC technique. (3) Results: A good selective index against MCF-7 tumor cell lines, combined with good cytotoxicity and antiproliferative properties, was revealed for conjugates NphtG-(KLAKLAK)2-NH2 and Caf-(KLAKLAK)2-NH2. The same compounds showed very good antifungal properties and complete hydrolytic stability for 72 h. The compound Caf-(KLβ-AKLβ-AK)2-NH2 containing β-Ala in its structures exhibited good antimicrobial activity against Escherichia coli K12 407 and Bacillus subtilis 3562, in combination with very good antiproliferative and cytotoxic properties, as well as hydrolytic stability. (4) Conclusions: The obtained results reveal that all synthesized conjugates could be useful for medical practice as anticancer or antimicrobial agents.
Collapse
Affiliation(s)
- Sirine Jaber
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria; (S.J.); (V.N.); (T.F.); (N.G.); (E.N.); (V.K.)
| | - Veronica Nemska
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria; (S.J.); (V.N.); (T.F.); (N.G.); (E.N.); (V.K.)
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 25 A, 1113 Sofia, Bulgaria; (I.I.); (E.I.)
| | - Elena Ivanova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 25 A, 1113 Sofia, Bulgaria; (I.I.); (E.I.)
| | - Tsvetelina Foteva
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria; (S.J.); (V.N.); (T.F.); (N.G.); (E.N.); (V.K.)
| | - Nelly Georgieva
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria; (S.J.); (V.N.); (T.F.); (N.G.); (E.N.); (V.K.)
| | - Ivan Givechev
- Testing Center Global Test Ltd., 31 Krushovski vrah Street, 1618 Sofia, Bulgaria;
| | - Emilia Naydenova
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria; (S.J.); (V.N.); (T.F.); (N.G.); (E.N.); (V.K.)
| | - Veronika Karadjova
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria; (S.J.); (V.N.); (T.F.); (N.G.); (E.N.); (V.K.)
| | - Dancho Danalev
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria; (S.J.); (V.N.); (T.F.); (N.G.); (E.N.); (V.K.)
| |
Collapse
|
11
|
Xi Y, Ge J, Wang M, Chen M, Niu W, Cheng W, Xue Y, Lin C, Lei B. Bioactive Anti-inflammatory, Antibacterial, Antioxidative Silicon-Based Nanofibrous Dressing Enables Cutaneous Tumor Photothermo-Chemo Therapy and Infection-Induced Wound Healing. ACS NANO 2020; 14:2904-2916. [PMID: 32031782 DOI: 10.1021/acsnano.9b07173] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Traditional skin tumor surgery and chronic bacterial-infection-induced wound healing/skin regeneration is still a challenge. The ideal strategy should eliminate the tumor, enhance wound healing/skin formation, and be anti-infection. Herein, we designed a multifunctional elastomeric poly(l-lactic acid)-poly(citrate siloxane)-curcumin@polydopamine hybrid nanofibrous scaffold (denoted as PPCP matrix) for tumor-infection therapy and infection-induced wound healing. The PPCP matrix showed intrinsically multifunctional properties including antioxidative, anti-inflammatory, photothermal, antibacterial, anticancer, and angiogenesis bioactivities. The polydopamine/curcumin presented an excellent near-infrared photothermal/cancer cell toxicity capacity, respectively, which supported PPCP for synergetic skin tumor therapy and antibacterial properties in vitro/in vivo. Additionally, the PPCP nanofibrous matrix significantly promotes the adhesion and proliferation of normal skin cells and accelerates the cutaneous wound healing in normal mice and bacterial-infected mice by enhancing the early angiogenesis. The PPCP nanofibrous matrix with multifunctional bioactivities provides a competitive strategy for skin tumor and bacterial-infection-induced wound healing.
Collapse
Affiliation(s)
- Yuewei Xi
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| | - Juan Ge
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| | - Min Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wen Niu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wei Cheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yumeng Xue
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Cai Lin
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bo Lei
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
12
|
Stoyanova N, Spasova M, Manolova N, Rashkov I, Georgieva A, Toshkova R. Antioxidant and Antitumor Activities of Novel Quercetin-Loaded Electrospun Cellulose Acetate/Polyethylene Glycol Fibrous Materials. Antioxidants (Basel) 2020; 9:antiox9030232. [PMID: 32168830 PMCID: PMC7139677 DOI: 10.3390/antiox9030232] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 11/21/2022] Open
Abstract
The aim of present study was to obtain novel fibrous materials based on cellulose derivative and polyethylene glycol loaded with natural biologically active compound quercetin by electrospinning. Several methods including scanning electron microscopy (SEM), IR spectroscopy, X-ray diffraction analysis (XRD), water contact angle measurements, differential scanning calorimetry (DSC), and UV-VIS spectroscopy were utilized to characterize the obtained materials. The incorporation of polyethylene glycol in the fibrous material resulted in increased hydrophilicity and burst release of quercetin from the fibers. Quercetin-containing fibrous mats exhibited high antioxidant activity as estimated by DPPH free radical scavenging method. In vitro tests with HeLa tumor cells and SH-4 melanoma skin cells were performed in order to determine the cytotoxicity of the novel materials. It was found that the fibrous CA/PEG/QUE materials exhibited high cytotoxic effect against both cell lines. Therefore, the novel polymeric materials containing quercetin are promising candidates for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Nikoleta Stoyanova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria; (N.S.); (N.M.)
| | - Mariya Spasova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria; (N.S.); (N.M.)
- Correspondence: (M.S.); (I.R.); Fax: +359-02-870-0309 (M.S. & I.R.)
| | - Nevena Manolova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria; (N.S.); (N.M.)
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria; (N.S.); (N.M.)
- Correspondence: (M.S.); (I.R.); Fax: +359-02-870-0309 (M.S. & I.R.)
| | - Ani Georgieva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 25, BG-1113 Sofia, Bulgaria; (A.G.); (R.T.)
| | - Reneta Toshkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 25, BG-1113 Sofia, Bulgaria; (A.G.); (R.T.)
| |
Collapse
|
13
|
Ignatova M, Manolova N, Rashkov I, Markova N. Antibacterial and antioxidant electrospun materials from poly(3-hydroxybutyrate) and polyvinylpyrrolidone containing caffeic acid phenethyl ester - "in" and "on" strategies for enhanced solubility. Int J Pharm 2018; 545:342-356. [PMID: 29738797 DOI: 10.1016/j.ijpharm.2018.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 01/16/2023]
Abstract
Caffeic acid phenethyl ester (CAPE) possesses a set of valuable biological properties: antioxidant, antibacterial, antitumor, anti-inflammatory, antiviral, etc. However, CAPE is poorly soluble in aqueous environment which is limiting its possible therapeutic applications. In the present study novel fibrous materials enhancing CAPE solubility and accelerating CAPE release were developed. The materials were prepared from poly(3-hydroxybutyrate) (PHB) by electrospinning and by electrospinning combined with dip-coating. The effects of the composition - without/with addition of polyvinylpyrrolidone (PVP) and of the design of fiber (CAPE in the bulk of the fiber or incorporated in the PVP coating) on some of the properties of these materials were studied. X-ray diffraction and differential scanning calorimetry analyses revealed that CAPE was in the amorphous state in CAPE-loaded fibers and in the PVP coating. The new CAPE-containing materials exhibited good antioxidant activity. The microbiological screening demonstrated that incorporation of CAPE in the fibers or in the coating induced complete killing of Gram-positive S. aureus and led to inhibition of the growth of Gram-negative E. coli by the fibrous materials. Moreover, pathogenic S. aureus did not adhere onto CAPE-containing fibrous mats. Therefore, the obtained materials are promising candidates for use as wound dressing materials.
Collapse
Affiliation(s)
- Milena Ignatova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia, Bulgaria.
| | - Nevena Manolova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia, Bulgaria.
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia, Bulgaria
| | - Nadya Markova
- Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Bl. 26, BG-1113 Sofia, Bulgaria
| |
Collapse
|