1
|
Bio-application of Inorganic Nanomaterials in Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:115-130. [PMID: 32602094 DOI: 10.1007/978-981-15-3258-0_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inorganic nanomaterials or nanoparticles (INPs) have drawn high attention for their usage in the biomedical field. In addition to the facile synthetic and modifiable property of INPs, INPs have various unique properties that originate from the components of the INPs, such as metal ions that are essential for the human body. Apart from their roles as components of the human body, inorganic materials have unique properties, such as magnetic, antibacterial, and piezoelectric, so that INPs have been widely used as either carriers or inducers. However, most of the bio-applicable INPs, especially those consisting of metal, can cause cytotoxicity. Therefore, INPs require modification to alleviate the harmful effect toward the cells by controlling the release of metal ions from INPs. Even though many attempts have been made to modify INPs, many things, including the side effects of INPs, still remain as obstacles in the bio-application, which need to be elucidated. In this chapter, we introduce novel INPs in terms of their synthetic method and bio-application in tissue engineering.
Collapse
|
2
|
Wandiyanto JV, Truong VK, Al Kobaisi M, Juodkazis S, Thissen H, Bazaka O, Bazaka K, Crawford RJ, Ivanova EP. The Fate of Osteoblast-Like MG-63 Cells on Pre-Infected Bactericidal Nanostructured Titanium Surfaces. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1575. [PMID: 31091694 PMCID: PMC6567816 DOI: 10.3390/ma12101575] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
Biomaterials that have been newly implanted inside the body are the substratum targets for a "race for the surface", in which bacterial cells compete against eukaryotic cells for the opportunity to colonize the surface. A victory by the former often results in biomaterial-associated infections, which can be a serious threat to patient health and can undermine the function and performance of the implant. Moreover, bacteria can often have a 'head start' if implant contamination has taken place either prior to or during the surgery. Current prevention and treatment strategies often rely on systemic antibiotic therapies, which are becoming increasingly ineffective due to a growing prevalence of antibiotic-resistant bacteria. Nanostructured surfaces that kill bacteria by physically rupturing bacterial cells upon contact have recently emerged as a promising solution for the mitigation of bacterial colonization of implants. Furthermore, these nanoscale features have been shown to enhance the adhesion and proliferation of eukaryotic cells, which is a key to, for example, the successful osseointegration of load-bearing titanium implants. The bactericidal activity and biocompatibility of such nanostructured surfaces are often, however, examined separately, and it is not clear to what extent bacterial cell-surface interactions would affect the subsequent outcomes of host-cell attachment and osseointegration processes. In this study, we investigated the ability of bactericidal nanostructured titanium surfaces to support the attachment and growth of osteoblast-like MG-63 human osteosarcoma cells, despite them having been pre-infected with pathogenic bacteria. MG-63 is a commonly used osteoblastic model to study bone cell viability, adhesion, and proliferation on the surfaces of load-bearing biomaterials, such as titanium. The nanostructured titanium surfaces used here were observed to kill the pathogenic bacteria, whilst simultaneously enhancing the growth of MG-63 cells in vitro when compared to that occurring on sterile, flat titanium surfaces. These results provide further evidence in support of nanostructured bactericidal surfaces being used as a strategy to help eukaryotic cells win the "race for the surface" against bacterial cells on implant materials.
Collapse
Affiliation(s)
- Jason V Wandiyanto
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Vi Khanh Truong
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia.
| | - Mohammad Al Kobaisi
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Saulius Juodkazis
- Center for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | | | - Olha Bazaka
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia.
| | - Kateryna Bazaka
- Institute for Future Environments, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia.
| | - Elena P Ivanova
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|