1
|
Charron PN, Tahir I, McConnell S, Sedler D, Floreani RA. Physico-mechanical and ex vivo analysis of aloe-alginate hydrogels for cervical cancer treatment. J BIOACT COMPAT POL 2023. [DOI: 10.1177/08839115221149723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A leading cancer diagnosis in women worldwide is cervical cancer, with current treatments all posing a risk of serious side effects. Less toxic, but effective treatments are sought after. Aloe vera ( barbadensis miller), known for its beneficial properties, has been studied for cancer treatment. While aloe gel has been shown to exhibit anti-cancer activity, it cannot form a hydrogel alone. Therefore, an interpenetrating network comprising alginate blended with aloe was examined as a cervical cancer treatment. We hypothesized the antioxidant properties of aloe gel would decrease cancer cell viability while the alginate hydrogel would improve mucoadhesion. We further hypothesized the antioxidant activity of aloe gel would induce cancer cell death at levels similar to common chemotherapeutics, and aimed to determine if these chemotherapeutic behaviors are constructive or destructive. Material and adhesive properties, drug encapsulation, and cancer cell viability were investigated and validated. The effect of aloe-alginate hydrogels on cervical cancer cell viability was not significantly different compared to aloe-blends containing doxorubicin (DOX), indicating that the aloe alone decreased cancer cell viability rendering the additional cytotoxic therapeutic not impactful as an adjuvant therapy. This study provides insight into the potential of natural biopolymers for treating cervical cancer without systemic toxic compounds.
Collapse
Affiliation(s)
- Patrick N Charron
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
| | - Irfan Tahir
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
| | - Sierra McConnell
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
| | - Danielle Sedler
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
| | - Rachael A Floreani
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
- Materials Science Program, University of Vermont, Burlington, VT, USA
- Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
2
|
Tahir I, Floreani R. Dual-Crosslinked Alginate-Based Hydrogels with Tunable Mechanical Properties for Cultured Meat. Foods 2022; 11:foods11182829. [PMID: 36140953 PMCID: PMC9498068 DOI: 10.3390/foods11182829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Cultured meat refers to the production of animal tissue by utilizing the same techniques as tissue engineering through cell culture. Various biomaterials have been designed to serve as in vitro supports for cell viability, growth, and migration. In this study, visible light and dual-crosslinked alginate hydrogels were designed to enable control of the physical and mechanical properties needed for the fabrication of cultured meat scaffolds. We hypothesized that a difference in hydrogel stiffness would influence cell behavior, indicating the efficacy of our processing methods to benefit the cultured meat field. Herein, we synthesized and created: (1) methacrylated alginate (AlgMA) to enable covalent crosslinking via visible light exposure, (2) Methacrylated alginate and arginyl-glycyl-aspartic acid RGD conjugates (AlgMA-RGD), using carbodiimide chemistries to provide cell-binding sites on the material, and (3) designer hydrogels incorporating different crosslinking techniques. The material and mechanical properties were evaluated to determine the structural integrity of the hydrogels, and in vitro cell assays were conducted to verify cytocompatibility and cell adhesion. Gelation, swell ratio, and weight loss calculations revealed longer gelation times for the AlgMA scaffolds and similar physical properties for all hydrogel groups. We showed that by adjusting the polymer concentration and the crosslinking methodology, the scaffold’s mechanical properties can be controlled and optimized within physiological ranges. Incorporating dual crosslinking significantly increased the compressive moduli of the AlgMA hydrogels, compared to visible-light crosslinking alone. Moreover, the muscle satellite cells responded favorably to the AlgMA scaffolds, with clear differences in cell density when cultured on materials with significantly different mechanical properties. Our results indicate the usefulness of the dual-crosslinking alginate hydrogel system to support in vitro meat growth.
Collapse
Affiliation(s)
- Irfan Tahir
- Department of Mechanical Engineering, University of Vermont, Burlington, VT 05405, USA
| | - Rachael Floreani
- Department of Mechanical Engineering, Department of Electrical and Biomedical Engineering, Materials Science and Engineering Graduate Program, Food Systems Graduate Program, University of Vermont, Burlington, VT 05405, USA
- Correspondence:
| |
Collapse
|
3
|
Xu T, Yang Y, Suo D, Bei HP, Xu X, Zhao X. Electrosprayed Regeneration-Enhancer-Element Microspheres Power Osteogenesis and Angiogenesis Coupling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200314. [PMID: 35261154 DOI: 10.1002/smll.202200314] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Electrosprayed microspheres for bone regeneration are conventionally restricted by the lack of osteogenic modulation for both encapsulated stem cells and surrounding cells at the defect site. Here, sodium alginate microspheres encapsulating L-arginine doped hydroxyapatite nanoparticles (Arg/HA NPs) and bone mesenchymal stem cells (BMSCs) as regeneration-enhancer-element reservoirs (Arg/HA-SA@BMSC) for bone healing are electrosprayed. The Arg/HA NPs serve as a container of L-arginine and Ca2+ and the BMSCs inside the microspheres metabolize the released L-arginine into bioactive gas nitric oxide (NO) in the presence of Ca2+ to activate the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signaling pathway. Meanwhile, the generated NO diffuses out of the microspheres together with the Ca2+ and L-arginine as exterior enhancers to promote the osteogenesis-angiogenesis coupling of surrounding BMSCs and endothelial cells (ECs) at the bone defect site, generating an internal/external modulation loop between the encapsulated cells and surrounding native cells. It is demonstrated that such regeneration-enhancer-element reservoirs could effectively increase the bone tissue formation and neovasculature using rat calvarial defect models. It is envisioned that the microsphere system could streamline vascularized bone regeneration therapy as a high throughput, minimally invasive yet highly effective strategy to accelerate bone healing.
Collapse
Affiliation(s)
- Tianpeng Xu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Di Suo
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Ho Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Xiaoxiao Xu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| |
Collapse
|
4
|
Abstract
Cell manipulation in droplets has emerged as one of the great successes of microfluidic technologies, with the development of single-cell screening. However, the droplet format has also served to go beyond single-cell studies, namely by considering the interactions between different cells or between cells and their physical or chemical environment. These studies pose specific challenges linked to the need for long-term culture of adherent cells or the diverse types of measurements associated with complex biological phenomena. Here we review the emergence of droplet microfluidic methods for culturing cells and studying their interactions. We begin by characterizing the quantitative aspects that determine the ability to encapsulate cells, transport molecules, and provide sufficient nutrients within the droplets. This is followed by an evaluation of the biological constraints such as the control of the biochemical environment and promoting the anchorage of adherent cells. This first part ends with a description of measurement methods that have been developed. The second part of the manuscript focuses on applications of these technologies for cancer studies, immunology, and stem cells while paying special attention to the biological relevance of the cellular assays and providing guidelines on improving this relevance.
Collapse
Affiliation(s)
- Sébastien Sart
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gustave Ronteix
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Shreyansh Jain
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gabriel Amselem
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Charles N Baroud
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
5
|
Soltani S, Emadi R, Haghjooy Javanmard S, Kharaziha M, Rahmati A, Thakur VK, Lotfian S. Development of an Injectable Shear-Thinning Nanocomposite Hydrogel for Cardiac Tissue Engineering. Gels 2022; 8:121. [PMID: 35200502 PMCID: PMC8871917 DOI: 10.3390/gels8020121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) offer a promising therapeutic method for cardiac tissue regeneration. However, to monitor the fate of MSCs for tissue repair, a better stem cell delivery carrier is needed. Developing a unique injectable and shear-thinning dual cross-linked hybrid hydrogel for MSC delivery for cardiac tissue engineering is highly desirable. This hydrogel was synthesised using guest: host reaction based on alginate-cyclodextrin (Alg-CD) and adamantane-graphene oxide (Ad-GO). Here, the role of macromere concentration (10 and 12%) on the MSC function is discussed. Our hybrid hydrogels reveal a suitable oxygen pathway required for cell survival. However, this value is strongly dependent on the macromere concentrations, while the hydrogels with 12% macromere concentration (2DC12) significantly enhanced the oxygen permeability value (1.16-fold). Moreover, after two weeks of culture, rat MSCs (rMSCs) encapsulated in Alg-GO hydrogels expressed troponin T (TNT) and GATA4 markers. Noticeably, the 2DC12 hydrogels enhance rMSCs differentiation markers (1.30-times for TNT and 1.21-times for GATA4). Overall, our findings indicate that tuning the hydrogel compositions regulates the fate of encapsulated rMSCs within hydrogels. These outcomes may promote the advancement of new multifunctional platforms that consider the spatial and transient guidelines of undifferentiated cell destiny and capacity even after transplantation for heart tissue regeneration.
Collapse
Affiliation(s)
- Samaneh Soltani
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (S.S.); (R.E.); (M.K.)
| | - Rahmatollah Emadi
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (S.S.); (R.E.); (M.K.)
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Mahshid Kharaziha
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (S.S.); (R.E.); (M.K.)
| | - Abbas Rahmati
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
| | - Saeid Lotfian
- Faculty of Engineering, University of Strathclyde, Glasgow G4 0LZ, UK
| |
Collapse
|
6
|
Mohajeri M, Eskandari M, Ghazali ZS, Ghazali HS. Cell encapsulation in alginate-based microgels using droplet microfluidics; a review on gelation methods and applications. Biomed Phys Eng Express 2022; 8. [PMID: 35073537 DOI: 10.1088/2057-1976/ac4e2d] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 11/12/2022]
Abstract
Cell encapsulation within the microspheres using a semi-permeable polymer allows the two-way transfer of molecules such as oxygen, nutrients, and growth factors. The main advantages of cell encapsulation technology include controlling the problems involved in transplanting rejection in tissue engineering applications and reducing the long-term need for immunosuppressive drugs following organ transplantation to eliminate the side effects. Cell-laden microgels can also be used in 3D cell cultures, wound healing, and cancerous clusters for drug testing. Since cell encapsulation is used for different purposes, several techniques have been developed to encapsulate cells. Droplet-based microfluidics is one of the most valuable techniques in cell encapsulating. This study aimed to review the geometries and the mechanisms proposed in microfluidic systems to precisely control cell-laden microgels production with different biopolymers. We also focused on alginate gelation techniques due to their essential role in cell encapsulation applications. Finally, some applications of these microgels and researches will be explored.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Biomedical Engineering Department, Amirkabir University of Technology, Department of Biomedical Engineering No. 350, Hafez Ave, Valiasr Square, Tehran, Iran, Tehran, 159163-4311, Iran (the Islamic Republic of)
| | - Mahnaz Eskandari
- Biomedical Engineering Department, Amirkabir University of Technology, Department of Biomedical Engineering No. 350, Hafez Ave, Valiasr Square, Tehran, Iran, Tehran, 159163-4311, Iran (the Islamic Republic of)
| | - Zahra Sadat Ghazali
- Biomedical Engineering Department, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran, Iran, Tehran, 159163-4311, Iran (the Islamic Republic of)
| | - Hanieh Sadat Ghazali
- Department of Nanobiotechnology, Tarbiat Modares University, Jalal Aleahmad-Tehran-Iran, Tehran, 14115-111, Iran (the Islamic Republic of)
| |
Collapse
|
7
|
Charron PN, Garcia LM, Tahir I, Floreani RA. Bio-inspired green light crosslinked alginate-heparin hydrogels support HUVEC tube formation. J Mech Behav Biomed Mater 2022; 125:104932. [PMID: 34736027 PMCID: PMC8665038 DOI: 10.1016/j.jmbbm.2021.104932] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/11/2021] [Accepted: 10/24/2021] [Indexed: 01/03/2023]
Abstract
Alginate is a polysaccharide which forms hydrogels via ionic and/or covalent crosslinking. The goal was to develop a material with suitable, physiologically relevant mechanical properties and biological impact for use in wound treatment. To determine if the novel material can initiate tube formation on its own, without the dependance on the addition of growth factors, heparin and/or arginyl-glycyl-aspartic acid (RGD) was covalently conjugated onto the alginate backbone. Herein, cell adhesion motifs and bioactive functional groups were incorporated covalently within alginate hydrogels to study the: 1) impact of crosslinked heparin on tubular network formation, 2) impact of RGD conjugation, and the 3) biological effect of vascular endothelial growth factor (VEGF) loading on cellular response. We investigated the structure-properties-function relationship and determined the viscoelastic and burst properties of the hydrogels most applicable for use as a healing cell and tissue adhesive material. Methacrylation of alginate and heparin hydroxyl groups respectively enabled free-radical covalent inter- and intra-molecular photo-crosslinking when exposed to visible green light in the presence of photo-initiators; the shear moduli indicate mechanical properties comparable to clinical standards. RGD was conjugated via carbodiimide chemistry at the alginate carboxyl groups. The adhesive and mechanical properties of alginate and alginate-heparin hydrogels were determined via burst pressure testing and rheology. Higher burst pressure and material failure at rupture imply physical tissue adhesion, advantageous for a tissue sealant healing material. After hydrogel formation, human umbilical vein endothelial cells (HUVECs) were seeded onto the alginate-based hydrogels; cytotoxicity, total protein content, and tubular network formation were assessed. Burst pressure results indicate that the cell responsive hydrogels adhere to collagen substrates and exhibit increased strength under high pressures. Furthermore, the results show that the green light crosslinked alginate-heparin maintained cell adhesion and promoted tubular formation.
Collapse
Affiliation(s)
| | - Luis M Garcia
- Department of Electrical and Biomedical Engineering, Burlington, VT, USA
| | - Irfan Tahir
- Department of Mechanical Engineering, Burlington, VT, USA
| | - Rachael A Floreani
- Department of Mechanical Engineering, Burlington, VT, USA; Department of Electrical and Biomedical Engineering, Burlington, VT, USA; Materials Science Program, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
8
|
Calcium-Based Biomineralization: A Smart Approach for the Design of Novel Multifunctional Hybrid Materials. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5100278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biomineralization consists of a complex cascade of phenomena generating hybrid nano-structured materials based on organic (e.g., polymer) and inorganic (e.g., hydroxyapatite) components. Biomineralization is a biomimetic process useful to produce highly biomimetic and biocompatible materials resembling natural hard tissues such as bones and teeth. In detail, biomimetic materials, composed of hydroxyapatite nanoparticles (HA) nucleated on an organic matrix, show extremely versatile chemical compositions and physical properties, which can be controlled to address specific challenges. Indeed, different parameters, including (i) the partial substitution of mimetic doping ions within the HA lattice, (ii) the use of different organic matrices, and (iii) the choice of cross-linking processes, can be finely tuned. In the present review, we mainly focused on calcium biomineralization. Besides regenerative medicine, these multifunctional materials have been largely exploited for other applications including 3D printable materials and in vitro three-dimensional (3D) models for cancer studies and for drug testing. Additionally, biomineralized multifunctional nano-particles can be involved in applications ranging from nanomedicine as fully bioresorbable drug delivery systems to the development of innovative and eco-sustainable UV physical filters for skin protection from solar radiations.
Collapse
|
9
|
Biomaterial-Assisted Regenerative Medicine. Int J Mol Sci 2021; 22:ijms22168657. [PMID: 34445363 PMCID: PMC8395440 DOI: 10.3390/ijms22168657] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
This review aims to show case recent regenerative medicine based on biomaterial technologies. Regenerative medicine has arousing substantial interest throughout the world, with “The enhancement of cell activity” one of the essential concepts for the development of regenerative medicine. For example, drug research on drug screening is an important field of regenerative medicine, with the purpose of efficient evaluation of drug effects. It is crucial to enhance cell activity in the body for drug research because the difference in cell condition between in vitro and in vivo leads to a gap in drug evaluation. Biomaterial technology is essential for the further development of regenerative medicine because biomaterials effectively support cell culture or cell transplantation with high cell viability or activity. For example, biomaterial-based cell culture and drug screening could obtain information similar to preclinical or clinical studies. In the case of in vivo studies, biomaterials can assist cell activity, such as natural healing potential, leading to efficient tissue repair of damaged tissue. Therefore, regenerative medicine combined with biomaterials has been noted. For the research of biomaterial-based regenerative medicine, the research objective of regenerative medicine should link to the properties of the biomaterial used in the study. This review introduces regenerative medicine with biomaterial.
Collapse
|
10
|
Mulazzi M, Campodoni E, Bassi G, Montesi M, Panseri S, Bonvicini F, Gentilomi GA, Tampieri A, Sandri M. Medicated Hydroxyapatite/Collagen Hybrid Scaffolds for Bone Regeneration and Local Antimicrobial Therapy to Prevent Bone Infections. Pharmaceutics 2021; 13:pharmaceutics13071090. [PMID: 34371782 PMCID: PMC8309148 DOI: 10.3390/pharmaceutics13071090] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Microbial infections occurring during bone surgical treatment, the cause of osteomyelitis and implant failures, are still an open challenge in orthopedics. Conventional therapies are often ineffective and associated with serious side effects due to the amount of drugs administered by systemic routes. In this study, a medicated osteoinductive and bioresorbable bone graft was designed and investigated for its ability to control antibiotic drug release in situ. This represents an ideal solution for the eradication or prevention of infection, while simultaneously repairing bone defects. Vancomycin hydrochloride and gentamicin sulfate, here considered for testing, were loaded into a previously developed and largely investigated hybrid bone-mimetic scaffold made of collagen fibers biomineralized with magnesium doped-hydroxyapatite (MgHA/Coll), which in the last ten years has widely demonstrated its effective potential in bone tissue regeneration. Here, we have explored whether it can be used as a controlled local delivery system for antibiotic drugs. An easy loading method was selected in order to be reproducible, quickly, in the operating room. The maintenance of the antibacterial efficiency of the released drugs and the biosafety of medicated scaffolds were assessed with microbiological and in vitro tests, which demonstrated that the MgHA/Coll scaffolds were safe and effective as a local delivery system for an extended duration therapy—promising results for the prevention of bone defect-related infections in orthopedic surgeries.
Collapse
Affiliation(s)
- Manuela Mulazzi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Elisabetta Campodoni
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
- Correspondence: (E.C.); (M.S.); Tel.: +39-0546-699761 (E.C. & M.S.)
| | - Giada Bassi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (F.B.); (G.A.G.)
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (F.B.); (G.A.G.)
- Operative Unit of Microbiology, IRCCS St. Orsola Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Monica Sandri
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
- Correspondence: (E.C.); (M.S.); Tel.: +39-0546-699761 (E.C. & M.S.)
| |
Collapse
|
11
|
Raja N, Park H, Choi YJ, Yun HS. Multifunctional Calcium-Deficient Hydroxyl Apatite-Alginate Core-Shell-Structured Bone Substitutes as Cell and Drug Delivery Vehicles for Bone Tissue Regeneration. ACS Biomater Sci Eng 2021; 7:1123-1133. [PMID: 33541070 DOI: 10.1021/acsbiomaterials.0c01341] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this work, we fabricated unique coiled-structured bioceramics contained in hydrogel beads for simultaneous drug and cell delivery using a combination of bone cement chemistry and bioprinting and characterized them. The core of the calcium-deficient hydroxyl apatite (CDHA) contains quercetin, which is a representative phytoestrogen isolated from onions and apples, to control the metabolism of bone tissue regeneration through sustained release over a long period of time. The shell consists of an alginate hydrogel that includes preosteoblast MC3T3-E1 cells. Ceramic paste and hydrogel were simultaneously extruded to fabricate core-shell beads through the inner and outer nozzles, respectively, of a concentric nozzle system based on a material-extruding-based three-dimensional (3D) printing system. The formation of beads and the coiled ceramic core is related to both alginate concentration and printing conditions. The size of the microbeads and the thickness of the coiled structure could be controlled by adjusting the nozzle conditions. The whole process was carried out at physiological conditions (37 °C) to be gentle on the cells. The alginate shell undergoes solidification by cross-linking in CaCl2 or monocalcium phosphate monohydrate (MCPM) solution, while the hardening and cementation of the α-tricalcium phosphate (α-TCP) core to CDHA are subsequently initiated by immersion in phosphate-buffered saline solution. This process replaces the typical sintering of ceramic processing to prevent damage to the hydrogel, cells, and drugs in the beads. The cell-loaded beads were then cultured in cell culture media where the cells could maintain good viability during the entire testing period, which was over 50 days. Cell growth and elongation were observed even in the alginate along the CDHA coiled structure over time. Sustained release of quercetin without any initial burst was also confirmed during a test period of 120 days. These novel structured microbeads with multibiofunctionality can be used as new bone substitutes for hard tissue regeneration in indeterminate defect sites.
Collapse
Affiliation(s)
- Naren Raja
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do, Republic of Korea
| | - Honghyun Park
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do, Republic of Korea
| | - Yeong-Jin Choi
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do, Republic of Korea
| | - Hui-Suk Yun
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do, Republic of Korea.,Korea University of Science and Technology (UST), 217 Gajeong-ro, Yeseong-gu, Daejeon 305-350, Republic of Korea
| |
Collapse
|
12
|
Harrington S, Ott L, Karanu F, Ramachandran K, Stehno-Bittel L. A Versatile Microencapsulation Platform for Hyaluronic Acid and Polyethylene Glycol. Tissue Eng Part A 2021; 27:153-164. [PMID: 32103710 PMCID: PMC7891217 DOI: 10.1089/ten.tea.2019.0286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/14/2020] [Indexed: 12/16/2022] Open
Abstract
Cell microencapsulation is a rapidly expanding field with broad potential for stem cell therapies and tissue engineering research. Traditional alginate microspheres suffer from poor biocompatibility, and microencapsulation of more advanced hydrogels is challenging due to their slower gelation rates. We have developed a novel, noncytotoxic, nonemulsion-based method to produce hydrogel microspheres compatible with a wide variety of materials, called core-shell spherification (CSS). Fabrication of microspheres by CSS derived from two slow-hardening hydrogels, hyaluronic acid (HA) and polyethylene glycol diacrylate (PEGDA), was characterized. HA microspheres were manufactured with two different crosslinking methods: thiolation and methacrylation. Microspheres of methacrylated HA (MeHA) had the greatest swelling ratio, the largest average diameter, and the lowest diffusion barrier. In contrast, PEGDA microspheres had the smallest diameters, the lowest swelling ratio, and the highest diffusion barrier, while microspheres of thiolated HA had characteristics that were in between the other two groups. To test the ability of the hydrogels to protect cells, while promoting function, diabetic NOD mice received intraperitoneal injections of PEGDA or MeHA microencapsulated canine islets. PEGDA microspheres reversed diabetes for the length of the study (up to 16 weeks). In contrast, islets encapsulated in MeHA microspheres at the same dose restored normoglycemia, but only transiently (3-4 weeks). Nonencapsulated canine islet transplanted at the same dose did not restore normoglycemia for any length of time. In conclusion, CSS provides a nontoxic microencapsulation procedure compatible with various hydrogel types.
Collapse
Affiliation(s)
- Stephen Harrington
- Likarda LLC, Kansas City, Missouri, USA
- Department of Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | - Lisa Stehno-Bittel
- Likarda LLC, Kansas City, Missouri, USA
- Department of Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
13
|
Pereira MS, Cardoso LMDF, da Silva TB, Teixeira AJ, Mizrahi SE, Ferreira GSM, Dantas FML, Cotta-de-Almeida V, Alves LA. A Low-Cost Open Source Device for Cell Microencapsulation. MATERIALS 2020; 13:ma13225090. [PMID: 33187294 PMCID: PMC7696579 DOI: 10.3390/ma13225090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
Abstract
Microencapsulation is a widely studied cell therapy and tissue bioengineering technique, since it is capable of creating an immune-privileged site, protecting encapsulated cells from the host immune system. Several polymers have been tested, but sodium alginate is in widespread use for cell encapsulation applications, due to its low toxicity and easy manipulation. Different cell encapsulation methods have been described in the literature using pressure differences or electrostatic changes with high cost commercial devices (about 30,000 US dollars). Herein, a low-cost device (about 100 US dollars) that can be created by commercial syringes or 3D printer devices has been developed. The capsules, whose diameter is around 500 µm and can decrease or increase according to the pressure applied to the system, is able to maintain cells viable and functional. The hydrogel porosity of the capsule indicates that the immune system is not capable of destroying host cells, demonstrating that new studies can be developed for cell therapy at low cost with microencapsulation production. This device may aid pre-clinical and clinical projects in low- and middle-income countries and is lined up with open source equipment devices.
Collapse
Affiliation(s)
- Miriam Salles Pereira
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil; (M.S.P.); (L.M.d.F.C.); (T.B.d.S.); (A.J.T.)
- Volta Redonda University Center—UniFOA, Av. Paulo Erlei Alves Abrantes, 1325-Três Poços, Volta Redonda 27240-560, Brazil
| | - Liana Monteiro da Fonseca Cardoso
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil; (M.S.P.); (L.M.d.F.C.); (T.B.d.S.); (A.J.T.)
| | - Tatiane Barreto da Silva
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil; (M.S.P.); (L.M.d.F.C.); (T.B.d.S.); (A.J.T.)
| | - Ayla Josma Teixeira
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil; (M.S.P.); (L.M.d.F.C.); (T.B.d.S.); (A.J.T.)
| | - Saul Eliahú Mizrahi
- National Institute of Technology—INT, Rio de Janeiro Av. Venezuela, 82-Saúde, Rio de Janeiro 20081-312, Brazil; (S.E.M.); (G.S.M.F.); (F.M.L.D.)
| | - Gabriel Schonwandt Mendes Ferreira
- National Institute of Technology—INT, Rio de Janeiro Av. Venezuela, 82-Saúde, Rio de Janeiro 20081-312, Brazil; (S.E.M.); (G.S.M.F.); (F.M.L.D.)
| | - Fabio Moyses Lins Dantas
- National Institute of Technology—INT, Rio de Janeiro Av. Venezuela, 82-Saúde, Rio de Janeiro 20081-312, Brazil; (S.E.M.); (G.S.M.F.); (F.M.L.D.)
| | - Vinicius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil;
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil; (M.S.P.); (L.M.d.F.C.); (T.B.d.S.); (A.J.T.)
- Correspondence: ; Tel.: +55-21-2562-1841; Fax: +55-21-2562-1816
| |
Collapse
|
14
|
Ling SD, Geng Y, Chen A, Du Y, Xu J. Enhanced single-cell encapsulation in microfluidic devices: From droplet generation to single-cell analysis. BIOMICROFLUIDICS 2020; 14:061508. [PMID: 33381250 PMCID: PMC7758092 DOI: 10.1063/5.0018785] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/09/2020] [Indexed: 05/24/2023]
Abstract
Single-cell analysis to investigate cellular heterogeneity and cell-to-cell interactions is a crucial compartment to answer key questions in important biological mechanisms. Droplet-based microfluidics appears to be the ideal platform for such a purpose because the compartmentalization of single cells into microdroplets offers unique advantages of enhancing assay sensitivity, protecting cells against external stresses, allowing versatile and precise manipulations over tested samples, and providing a stable microenvironment for long-term cell proliferation and observation. The present Review aims to give a preliminary guidance for researchers from different backgrounds to explore the field of single-cell encapsulation and analysis. A comprehensive and introductory overview of the droplet formation mechanism, fabrication methods of microchips, and a myriad of passive and active encapsulation techniques to enhance single-cell encapsulation efficiency were presented. Meanwhile, common methods for single-cell analysis, especially for long-term cell proliferation, differentiation, and observation inside microcapsules, are briefly introduced. Finally, the major challenges faced in the field are illustrated, and potential prospects for future work are discussed.
Collapse
Affiliation(s)
- Si Da Ling
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuhao Geng
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - An Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Samadian H, Maleki H, Allahyari Z, Jaymand M. Natural polymers-based light-induced hydrogels: Promising biomaterials for biomedical applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213432] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
He Q, Zhang J, Liao Y, Alakpa EV, Bunpetch V, Zhang J, Ouyang H. Current advances in microsphere based cell culture and tissue engineering. Biotechnol Adv 2019; 39:107459. [PMID: 31682922 DOI: 10.1016/j.biotechadv.2019.107459] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/12/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Qiulin He
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jingwei Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Youguo Liao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China.; Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China
| | - Enateri Verissarah Alakpa
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiayan Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hongwei Ouyang
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China.; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; China Orthopedic Regenerative Medicine Group (CORMed), China..
| |
Collapse
|
17
|
Dhamecha D, Movsas R, Sano U, Menon JU. Applications of alginate microspheres in therapeutics delivery and cell culture: Past, present and future. Int J Pharm 2019; 569:118627. [PMID: 31421199 PMCID: PMC7073469 DOI: 10.1016/j.ijpharm.2019.118627] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022]
Abstract
Polymers are the backbone of pharmaceutical drug delivery. There are several polymers with varying properties available today for use in different pharmaceutical applications. Alginate is widely used in biomedical research due to its attractive features such as biocompatibility, biodegradability, inertness, low cost, and ease of production and formulation. Encapsulation of therapeutic agents in alginate/alginate complex microspheres protects them from environmental stresses, including the acidic environment in the gastro-intestinal tract (GIT) and enzymatic degradation, and allows targeted and sustained delivery of the agents. Microencapsulation is playing an increasingly important role in drug delivery as evidenced by the recent surge in research articles on the use of alginate in the delivery of small molecules, cells, bacteria, proteins, vaccines, and for tissue engineering applications. Formulation of these alginate microspheres (AMS) are commonly achieved by conventional external gelation method using various instrumental manipulation such as vortexing, homogenization, ultrasonication or spray drying, and each method affects the overall particle characteristics. In this review, an inclusive summary of the currently available methods for the formulation of AMS, its recent use in the encapsulation and delivery of therapeutics, and future outlook will be discussed.
Collapse
Affiliation(s)
- Dinesh Dhamecha
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Rachel Movsas
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Ugene Sano
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
18
|
Gao Y, Jin X. Dual Crosslinked Methacrylated Alginate Hydrogel Micron Fibers and Tissue Constructs for Cell Biology. Mar Drugs 2019; 17:E557. [PMID: 31569386 PMCID: PMC6836215 DOI: 10.3390/md17100557] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022] Open
Abstract
As an important natural polysaccharide biomaterial from marine organisms, alginate and its derivatives have shown great potential in the fabrication of biomedical materials such as tissue engineering, cell biology, drug delivery, and pharmaceuticals due to their excellent biological activity and controllable physicochemical properties. Ionic crosslinking is the most common method used in the preparation of alginate-based biomaterials, but ionic crosslinked alginate hydrogels are prone to decompose in physiological solution, which hinders their applications in biomedical fields. In this study, dual crosslinked alginate hydrogel microfibers were prepared for the first time. The ionic crosslinked methacrylated alginate (Alg-MA) hydrogel microfibers fabricated by Microfluidic Fabrication (MFF) system were exposed to ultraviolet (UV) light and covalent crosslink between methacrylate groups avoided the fracture of dual crosslinked macromolecular chains in organizational environment. The chemical structures, swelling ratio, mechanical performance, and stability were investigated. Cell-encapsulated dual crosslinked Alg-MA hydrogel microfibers were fabricated to explore the application in tissue engineering for the first time. The hydrogel microfibers provided an excellent 3D distribution and growth conditions for cells. Cell-encapsulated Alg-MA microfibers scaffolds with functional 3D tissue structures were developed which possessed great potential in the production of next-generation scaffolds for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yingjun Gao
- Key Laboratory of Textile Science and Technology of the Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Xiangyu Jin
- Key Laboratory of Textile Science and Technology of the Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
19
|
Li YY, Lam KL, Chen AD, Zhang W, Chan BP. Collagen microencapsulation recapitulates mesenchymal condensation and potentiates chondrogenesis of human mesenchymal stem cells – A matrix-driven in vitro model of early skeletogenesis. Biomaterials 2019; 213:119210. [DOI: 10.1016/j.biomaterials.2019.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/28/2019] [Accepted: 05/10/2019] [Indexed: 01/01/2023]
|
20
|
Etter JN, Oldinski RA. Synthesis of a tri-network alginate hydrogel for use as an injectable cell carrier. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaeb6f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|