1
|
Winning D, Wychowaniec JK, Wu B, Heise A, Rodriguez BJ, Brougham DF. Thermoresponsiveness Across the Physiologically Accessible Range: Effect of Surfactant, Cross-Linker, and Initiator Content on Size, Structure, and Transition Temperature of Poly( N-isopropylmethacrylamide) Microgels. ACS OMEGA 2024; 9:36185-36197. [PMID: 39220537 PMCID: PMC11360016 DOI: 10.1021/acsomega.4c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The influence of surfactant, cross-linker, and initiator on the final structure and thermoresponse of poly(N-isopropylmethacrylamide) (pNIPMAM) microgels was evaluated. The goals were to control particle size (into the nanorange) and transition temperature (across the physiologically accessible range). The concentration of the reactants used in the synthesis was varied, except for the monomer, which was kept constant. The thermoresponsive suspensions formed were characterized by dynamic light scattering, small-angle X-ray scattering, atomic force microscopy, and rheology. Increasing surfactant, sodium dodecyl sulfate content, produced smaller microgels, as expected, into the nanorange and with greater internal entanglement, but with no change in phase transition temperature (LCST), which is contrary to previous reports. Increasing cross-linker, N,N-methylenebis acrylamide, content had no impact on particle size but reduced particle deformability and, again contrary to previous reports of decreases, progressively increased the LCST from 39 to 46 °C. The unusual LCST trends were confirmed using different rheological techniques. Initiator, potassium persulfate, content was found to weakly influence the outcomes. An optimized content was identified that provides functional nanogels in the 100 nm (swollen) size range with controlled LCST, just above physiological temperature. The study contributes chemistry-derived design rules for thermally responsive colloidal particles with physiologically accessible LCST for a variety of biomedical and soft robotics applications.
Collapse
Affiliation(s)
- Danielle Winning
- School
of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jacek K. Wychowaniec
- School
of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- AO
Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Bing Wu
- Dutch-Belgian
Beamline (DUBBLE), European Synchrotron Radiation Facility (ESRF), 71 Avenue Des Martyrs, CS 40220, Grenoble 38043, France
| | - Andreas Heise
- Department
of Chemistry, Royal College of Surgeons
in Ireland, Dublin 9, Ireland
| | - Brian J. Rodriguez
- Conway
Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of
Physics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dermot F. Brougham
- School
of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Ganguly S, Margel S. Bioimaging Probes Based on Magneto-Fluorescent Nanoparticles. Pharmaceutics 2023; 15:686. [PMID: 36840008 PMCID: PMC9967590 DOI: 10.3390/pharmaceutics15020686] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Novel nanomaterials are of interest in biology, medicine, and imaging applications. Multimodal fluorescent-magnetic nanoparticles demand special attention because they have the potential to be employed as diagnostic and medication-delivery tools, which, in turn, might make it easier to diagnose and treat cancer, as well as a wide variety of other disorders. The most recent advancements in the development of magneto-fluorescent nanocomposites and their applications in the biomedical field are the primary focus of this review. We describe the most current developments in synthetic methodologies and methods for the fabrication of magneto-fluorescent nanocomposites. The primary applications of multimodal magneto-fluorescent nanoparticles in biomedicine, including biological imaging, cancer treatment, and drug administration, are covered in this article, and an overview of the future possibilities for these technologies is provided.
Collapse
Affiliation(s)
- Sayan Ganguly
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shlomo Margel
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
3
|
Das P, Ganguly S, Margel S, Gedanken A. Tailor made magnetic nanolights: fabrication to cancer theranostics applications. NANOSCALE ADVANCES 2021; 3:6762-6796. [PMID: 36132370 PMCID: PMC9419279 DOI: 10.1039/d1na00447f] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/12/2021] [Indexed: 05/14/2023]
Abstract
Nanoparticles having magnetic and fluorescent properties could be considered as a gift to materials scientists due to their unique magneto-optical qualities. Multiple component particles can overcome challenges related with a single component and unveil bifunctional/multifunctional features that can enlarge their applications in diagnostic imaging agents and therapeutic delivery vehicles. Bifunctional nanoparticles that have both luminescent and magnetic features are termed as magnetic nanolights. Herein, we present recent progress of magneto-fluorescent nanoparticles (quantum dots based magnetic nanoparticles, Janus particles, and heterocrystalline fluorescent magnetic materials), comprehensively describing fabrication strategies, types, and biomedical applications. In this review, our aim is not only to encompass the preparation strategies of these special types of magneto-fluorescent nanomaterials but also their extensive applications in bioimaging techniques, cancer therapy (targeted and hyperthermic), and sustained release of active agents (drugs, proteins, antibodies, hormones, enzymes, growth factors).
Collapse
Affiliation(s)
- Poushali Das
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University Ramat-Gan 5290002 Israel
- Departments of Chemistry, Bar-Ilan University Ramat-Gan 5290002 Israel
| | - Sayan Ganguly
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University Ramat-Gan 5290002 Israel
- Departments of Chemistry, Bar-Ilan University Ramat-Gan 5290002 Israel
| | - Shlomo Margel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University Ramat-Gan 5290002 Israel
- Departments of Chemistry, Bar-Ilan University Ramat-Gan 5290002 Israel
| | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University Ramat-Gan 5290002 Israel
- Departments of Chemistry, Bar-Ilan University Ramat-Gan 5290002 Israel
| |
Collapse
|
4
|
Wang J, Huang L, Huang Y, Jiang Y, Zhang L, Feng G, Liu L. Therapeutic effect of the injectable thermosensitive hydrogel loaded with SHP099 on intervertebral disc degeneration. Life Sci 2020; 266:118891. [PMID: 33310047 DOI: 10.1016/j.lfs.2020.118891] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 02/05/2023]
Abstract
AIMS Intervertebral disc (IVD) degeneration (IDD), a common musculoskeletal disease with limited self-healing ability, is challenging to treat. The development of innovative therapies to reverse IDD depends on the elucidation of its regulatory mechanisms. Therefore, the role of Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2) in the pathogenesis of IDD and the therapeutic effect of its small-molecule inhibitor, SHP099, were investigated. MATERIALS AND METHODS The expression of SHP2 by nucleus pulposus (NP) cells in IVD was investigated in vitro and in vivo, and its molecular mechanism in IDD was explored using transfection technology. Injectable N-isopropylacrylamide-based thermosensitive hydrogels were synthesized for SHP099 delivery. KEY FINDINGS SHP2 was highly expressed in degenerated IVDs, where its overexpression in NP cells inhibited the expression of Sry-related HMG box-9 (Sox9), leading to the decreased expression of key proteins (collagen II and aggrecan) and consequently to IDD. SHP099 reversed the degeneration of NP cells in vitro. Moreover, its administration in rats via the injectable thermosensitive hydrogel had a therapeutic effect on IDD. SIGNIFICANCE Our results suggest that SHP2 is a key factor in IDD progression, and SHP099 inhibits both its expression and NP cell degeneration. Therefore, SHP099 delivery via injectable thermosensitive hydrogels is a potential treatment strategy for IDD.
Collapse
Affiliation(s)
- Jingcheng Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Leizhen Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yong Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yulin Jiang
- Analytical and Testing Center, State Key Laboratory of Oral Diseases, School of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- Analytical and Testing Center, State Key Laboratory of Oral Diseases, School of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ganjun Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Limin Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
5
|
Niu H, Li J, Cai Q, Wang X, Luo F, Gong J, Qiang Z, Ren J. Molecular Stereocomplexation for Enhancing the Stability of Nanoparticles Encapsulated in Polymeric Micelles for Magnetic Resonance Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13881-13889. [PMID: 33170710 DOI: 10.1021/acs.langmuir.0c02281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A generalizable approach for improving the stability of polylactide-based (PLA-based) micelles for encapsulating nanoparticles (NPs) is demonstrated, using stereocomplexation between a pair of poly (ethylene glycol)-b-poly(d-lactide)/poly(ethylene glycol)-b-poly(l-lactide) block copolymer blends. Three different superparamagnetic ferrite-based NPs with distinct nanostructures are first prepared by the high-temperature pyrolysis method, including spherical MnFe2O4, cubic MnFe2O4, and core-shell MnFe2O4@Fe3O4. The diameters of these NPs are approximately 7-10 nm as revealed by transmission electron microscopy. These hydrophobic NPs can be encapsulated within self-assembled, stereocomplexed PLA (sc-PLA) micelles. All sc-PLA micelle systems loaded with three different NPs exhibit enhanced stability at elevated temperatures (20-60 °C) and with extended storage time (∼96 h) compared with analogous samples without stereocomplex formation, confirmed by dynamic light scattering measurements. The magnetic NP-loaded micelles with mean diameters of approximately 150 nm show both biocompatibility and superparamagnetic property. Under a 1.5 T magnetic field, cubic MnFe2O4 (c-MnFe2O4)-loaded micelles exhibit an excellent negative contrast enhancement of MR signals (373 mM-1·s-1), while core-shell MnFe2O4@Fe3O4-loaded micelles show a slightly lower signal for MR imaging (275 mM-1·s-1). These results suggest the potential of using sc-PLA-based polymer micelles as universal carriers for magnetic resonance imaging contrast agents with improved stability for different applications such as cancer diagnosis.
Collapse
Affiliation(s)
- Haifeng Niu
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianbo Li
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Quan Cai
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Xuefang Wang
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Fuhong Luo
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jiaying Gong
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
6
|
Sun W, Huang S, Zhang S, Luo Q. Preparation, Characterization and Application of Multi-Mode Imaging Functional Graphene Au-Fe 3O 4 Magnetic Nanocomposites. MATERIALS 2019; 12:ma12121978. [PMID: 31248197 PMCID: PMC6631131 DOI: 10.3390/ma12121978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022]
Abstract
Nanomaterials extensively studied by nanotechnology scientists have been extensively applied in biomedicine, chemistry, physics and other fields nowadays. Magnetic nanoparticles, surpassing nano applications, are found to possess many advantages over nonmagnetic nanomaterials. Graphene oxide (GO), in particular, draws growing scholarly attention due to its large surface area, good water solubility and biocompatibility, rich surface functional group and easy-to-modify property. In this paper, we modify the Polyethylene mide (PEI) molecule on the surface of GO to increase its biocompatibility. The Au-Fe3O4 nanoparticles and folic acid molecules on the ligand make the resulting composite applicable both in magnetic resonance imaging and in cancer cell targeting. In addition, the π-π accumulation of doxorubicin used to load the anticancer drug can release the drug under the acid condition of the cancer cells, detect the cancer cells by fluorescence and realize the multi-mode detection of cancer cells.
Collapse
Affiliation(s)
- Wei Sun
- School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China.
| | - Shaowen Huang
- School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China.
| | - Siyu Zhang
- School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China.
| | - Qi Luo
- School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China.
- School of Civil Engineering, Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518061, China.
| |
Collapse
|