1
|
Lin S, Yuan X, Du X, An R, Han Y. Surface microtopography construction and osteogenic properties evaluation of bulk polylactic acid implants. Colloids Surf B Biointerfaces 2023; 228:113418. [PMID: 37348268 DOI: 10.1016/j.colsurfb.2023.113418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
In this study, polylactic acid (PLA) microspheres were used as the raw material to construct bulk implants with surface microtopography through hot pressing and heat treatment, and the microtopographical structures were regulated through the sizes of the PLA microspheres. The surface microtopographies of PLA implants were successfully constructed using micron-sized bulges, which showed a wave-like structure. The ridge width of bulges ranged from 1.64 ± 0.16 µm to 82.52 ± 14.38 µm and the valley depth ranged from 0.49 ± 0.07 µm to 37.35 ± 6.78 µm according to the sizes of microspheres. The nanoindentation tests showed that the modulus and hardness of PLA implants were gradually increased with the decrease in microsphere sizes. The surface microtopography resulted in a slight increase in the hydrophobicity of the PLA implants, but no significant differences were observed. Cells cultured on the implant surface with microtopography exhibited varying morphological responses, and significantly increased osteogenic activity was observed relative to a PLA flat film. This study demonstrated that the surface microtopography derived from PLA microspheres could regulate cellular response and activate osteogenic properties of PLA implants.
Collapse
Affiliation(s)
- Si Lin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xiaoting Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xinrui Du
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Ran An
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yingchao Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, PR China.
| |
Collapse
|
2
|
Allione M, Limongi T, Marini M, Torre B, Zhang P, Moretti M, Perozziello G, Candeloro P, Napione L, Pirri CF, Di Fabrizio E. Micro/Nanopatterned Superhydrophobic Surfaces Fabrication for Biomolecules and Biomaterials Manipulation and Analysis. MICROMACHINES 2021; 12:1501. [PMID: 34945349 PMCID: PMC8708205 DOI: 10.3390/mi12121501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 01/04/2023]
Abstract
Superhydrophobic surfaces display an extraordinary repulsion to water and water-based solutions. This effect emerges from the interplay of intrinsic hydrophobicity of the surface and its morphology. These surfaces have been established for a long time and have been studied for decades. The increasing interest in recent years has been focused towards applications in many different fields and, in particular, biomedical applications. In this paper, we review the progress achieved in the last years in the fabrication of regularly patterned superhydrophobic surfaces in many different materials and their exploitation for the manipulation and characterization of biomaterial, with particular emphasis on the issues affecting the yields of the fabrication processes and the quality of the manufactured devices.
Collapse
Affiliation(s)
- Marco Allione
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy;
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| | - Tania Limongi
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| | - Monica Marini
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| | - Bruno Torre
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| | - Peng Zhang
- Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (P.Z.); (M.M.)
| | - Manola Moretti
- Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (P.Z.); (M.M.)
| | - Gerardo Perozziello
- BioNEM Laboratory, Department of Experimental and Clinical Medicine, Campus S. Venuta, Magna Graecia University, Germaneto, Viale Europa, 88100 Catanzaro, Italy; (G.P.); (P.C.)
| | - Patrizio Candeloro
- BioNEM Laboratory, Department of Experimental and Clinical Medicine, Campus S. Venuta, Magna Graecia University, Germaneto, Viale Europa, 88100 Catanzaro, Italy; (G.P.); (P.C.)
| | - Lucia Napione
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| | - Candido Fabrizio Pirri
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy;
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| | - Enzo Di Fabrizio
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| |
Collapse
|
4
|
Li Q, Zeng Y, Jiang Q, Wu C, Zhou J. Role of mTOR signaling in the regulation of high glucose-induced podocyte injury. Exp Ther Med 2019; 17:2495-2502. [PMID: 30906437 PMCID: PMC6425130 DOI: 10.3892/etm.2019.7236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023] Open
Abstract
Podocyte injury, which promotes progressive nephropathy, is considered a key factor in the progression of diabetic nephropathy. The mammalian target of rapamycin (mTOR) signaling cascade controls cell growth, survival and metabolism. The present study investigated the role of mTOR signaling in regulating high glucose (HG)-induced podocyte injury. MTT assay and flow cytometry assay results indicated that HG significantly increased podocyte viability and apoptosis. HG effects on podocytes were suppressed by mTOR complex 1 (mTORC1) inhibitor, rapamycin, and further suppressed by dual mTORC1 and mTORC2 inhibitor, KU0063794, when compared with podocytes that received mannitol treatment. In addition, western blot analysis revealed that the expression levels of Thr-389-phosphorylated p70S6 kinase (p-p70S6K) and phosphorylated Akt (p-Akt) were significantly increased by HG when compared with mannitol treatment. Notably, rapamycin significantly inhibited HG-induced p-p70S6K expression, but did not significantly impact p-Akt expression. However, KU0063794 significantly inhibited the HG-induced p-p70S6K and p-Akt expression levels. Furthermore, the expression of ezrin was significantly reduced by HG when compared with mannitol treatment; however, α-smooth muscle actin (α-SMA) expression was significantly increased. Immunofluorescence analysis on ezrin and α-SMA supported the results of western blot analysis. KU0063794, but not rapamycin, suppressed the effect of HG on the expression levels of ezrin and α-SMA. Thus, it was suggested that the increased activation of mTOR signaling mediated HG-induced podocyte injury. In addition, the present findings suggest that the mTORC1 and mTORC2 signaling pathways may be responsible for the cell viability and apoptosis, and that the mTORC2 pathway could be primarily responsible for the regulation of cytoskeleton-associated proteins.
Collapse
Affiliation(s)
- Qiuyue Li
- Nephrology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yan Zeng
- Nephrology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qing Jiang
- Nephrology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Cong Wu
- Nephrology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing Zhou
- Nephrology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|