1
|
Hosseini Hooshiar M, Mozaffari A, Hamed Ahmed M, Abdul Kareem R, Jaber Zrzo A, Salah Mansoor A, H Athab Z, Parhizgar Z, Amini P. Potential role of metal nanoparticles in treatment of peri-implant mucositis and peri-implantitis. Biomed Eng Online 2024; 23:101. [PMID: 39396020 PMCID: PMC11470642 DOI: 10.1186/s12938-024-01294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024] Open
Abstract
Peri-implantitis (PI), a pathological condition associated with plaque, affects the tissues around dental implants. In addition, peri-implant mucositis (PIM) is a precursor to the destructive inflammatory PI and is an inflammation of the soft tissues surrounding the dental implant. It is challenging to eradicate and regulate the PI treatment due to its limited effectiveness. Currently, there is a significant interest in the development and research of additional biocompatible materials to prevent the failure of dental implants. Nanotechnology has the potential to address or develop solutions to the significant challenge of implant failure caused by cytotoxicity and biocompatibility in dentistry. Nanoparticles (NPs) may be used as carriers for the release of medicines, as well as to make implant coatings and supply appropriate materials for implant construction. Furthermore, the bioactivity and therapeutic efficacy of metal NPs in peri-implant diseases (PID) are substantiated by a plethora of in vitro and in vivo studies. Furthermore, the use of silver (Ag), gold (Au), zinc oxide, titanium oxide (TiO2), copper (Cu), and iron oxide NPs as a cure for dental implant infections brought on by bacteria that have become resistant to several medications is the subject of recent dentistry research. Because of their unique shape-dependent features, which enhance bio-physio-chemical functionalization, antibacterial activity, and biocompatibility, metal NPs are employed in dental implants. This study attempted to provide an overview of the application of metal and metal oxide NPs to control and increase the success rate of implants while focusing on the antimicrobial properties of these NPs in the treatment of PID, including PIM and PI. Additionally, the study reviewed the potential benefits and drawbacks of using metal NPs in clinical settings for managing PID, with the goal of advancing future treatment strategies for these conditions.
Collapse
Affiliation(s)
| | - Asieh Mozaffari
- Department of Periodontics, Faculty of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | | | - Athmar Jaber Zrzo
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Zahra Parhizgar
- Resident of Periodontology, Department of Periodontics, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Parisa Amini
- Department of Periodontology, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Soe ZC, Wahyudi R, Mattheos N, Lertpimonchai A, Everts V, Tompkins KA, Osathanon T, Limjeerajarus CN, Limjeerajarus N. Application of nanoparticles as surface modifiers of dental implants for revascularization/regeneration of bone. BMC Oral Health 2024; 24:1175. [PMID: 39367468 PMCID: PMC11451240 DOI: 10.1186/s12903-024-04966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Osseointegrated dental implants are widely established as a first-choice treatment for the replacement of missing teeth. Clinical outcomes are however often compromised by short or longer-term biological complications and pathologies. Nanoparticle-coated materials represent a very active research area with the potential to enhance clinical outcomes and reduce complications of implant therapy. This scoping review aimed to summarize current research on various types of nanoparticles (NPs) used as surface modifiers of dental implants and their potential to promote biological and clinical outcomes. METHODS A systematic electronic search was conducted in SCOPUS, PubMed and Google Scholar aiming to identify in vivo, in situ, or in vitro studies published between 2014 and 2024. Inclusion and exclusion criteria were determined and were described in the methods section. RESULTS A total of 169 articles (44 original papers from Scopus and PubMed, and 125 articles from Google Scholar) were identified by the electronic search. Finally, 30 studies fit the inclusion criteria and were further used in this review. The findings from the selected papers suggest that nanoparticle-coated dental implants show promising results in enhancing bone regeneration and promoting angiogenesis around the implant site. These effects are due to the unique physicochemical properties of nanoparticle-coated implants and the controlled release of bioactive molecules from nanoparticle-modified surfaces. CONCLUSION Nanoscale modifications displayed unique properties which could significantly enhance the properties of dental implants and further accelerate revascularization, and osseointegration while facilitating early implant loading. Yet, since many of these findings were based on in-vitro/in-situ systems, further research is required before such technology reaches clinical application.
Collapse
Affiliation(s)
- Zar Chi Soe
- Faculty of Dentistry, Graduate Program in Oral Biology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rahman Wahyudi
- Faculty of Dentistry, Graduate Program in Oral Biology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nikos Mattheos
- Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Attawood Lertpimonchai
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
- Office of Research Affairs, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kevin A Tompkins
- Office of Research Affairs, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chalida Nakalekha Limjeerajarus
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Genomics and Precision Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | | |
Collapse
|
3
|
Devaraji M, Thanikachalam PV, Elumalai K. The potential of copper oxide nanoparticles in nanomedicine: A comprehensive review. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:80-99. [PMID: 39416693 PMCID: PMC11446360 DOI: 10.1016/j.biotno.2024.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 10/19/2024]
Abstract
Nanotechnology is a modern scientific discipline that uses nanoparticles of metals like copper, silver, gold, platinum, and zinc for various applications. Copper oxide nanoparticles (CuONPs) are effective in biomedical settings, such as killing bacteria, speeding up reactions, stopping cancer cells, and coating surfaces. These inorganic nanostructures have a longer shelf life than their organic counterparts and are chemically inert and thermally stable. However, commercial synthesis of NPs often involves harmful byproducts and hazardous chemicals. Green synthesis for CuONPs offers numerous benefits, including being clean, harmless, economical, and environmentally friendly. Using naturally occurring organisms like bacteria, yeast, fungi, algae, and plants can make CuONPs more environmentally friendly. CuONPs are expected to be used in nanomedicine due to their potent antimicrobial properties and disinfecting agents for infectious diseases. This comprehensive review looks to evaluate research articles published in the last ten years that investigate the antioxidant, anticancer, antibacterial, wound healing, dental application and catalytic properties of copper nanoparticles generated using biological processes. Utilising the scientific approach of large-scale data analytics. However, their toxic effects on vertebrates and invertebrates raise concerns about their use for diagnostic and therapeutic purposes. Therefore, biocompatibility and non-toxicity are crucial for selecting nanoparticles for clinical research.
Collapse
Affiliation(s)
- Mahalakshmi Devaraji
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Punniyakoti V. Thanikachalam
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Karthikeyan Elumalai
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
4
|
Yu YM, Lu YP, Zhang T, Zheng YF, Liu YS, Xia DD. Biomaterials science and surface engineering strategies for dental peri-implantitis management. Mil Med Res 2024; 11:29. [PMID: 38741175 DOI: 10.1186/s40779-024-00532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Peri-implantitis is a bacterial infection that causes soft tissue inflammatory lesions and alveolar bone resorption, ultimately resulting in implant failure. Dental implants for clinical use barely have antibacterial properties, and bacterial colonization and biofilm formation on the dental implants are major causes of peri-implantitis. Treatment strategies such as mechanical debridement and antibiotic therapy have been used to remove dental plaque. However, it is particularly important to prevent the occurrence of peri-implantitis rather than treatment. Therefore, the current research spot has focused on improving the antibacterial properties of dental implants, such as the construction of specific micro-nano surface texture, the introduction of diverse functional coatings, or the application of materials with intrinsic antibacterial properties. The aforementioned antibacterial surfaces can be incorporated with bioactive molecules, metallic nanoparticles, or other functional components to further enhance the osteogenic properties and accelerate the healing process. In this review, we summarize the recent developments in biomaterial science and the modification strategies applied to dental implants to inhibit biofilm formation and facilitate bone-implant integration. Furthermore, we summarized the obstacles existing in the process of laboratory research to reach the clinic products, and propose corresponding directions for future developments and research perspectives, so that to provide insights into the rational design and construction of dental implants with the aim to balance antibacterial efficacy, biological safety, and osteogenic property.
Collapse
Affiliation(s)
- Ya-Meng Yu
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yu-Pu Lu
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Ting Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yu-Feng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Yun-Song Liu
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Dan-Dan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.
| |
Collapse
|
5
|
Li Y, Stewart CA, Finer Y. Advanced Antimicrobial and Anti-Infective Strategies to Manage Peri-Implant Infection: A Narrative Review. Dent J (Basel) 2024; 12:125. [PMID: 38786523 PMCID: PMC11120417 DOI: 10.3390/dj12050125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Despite reductions in bacterial infection and enhanced success rate, the widespread use of systemic antibiotic prophylaxis in implant dentistry is controversial. This use has contributed to the growing problem of antimicrobial resistance, along with creating significant health and economic burdens. The basic mechanisms that cause implant infection can be targeted by new prevention and treatment methods which can also lead to the reduction of systemic antibiotic exposure and its associated adverse effects. This review aims to summarize advanced biomaterial strategies applied to implant components based on anti-pathogenic mechanisms and immune balance mechanisms. It emphasizes that modifying the dental implant surface and regulating the early immune response are promising strategies, which may further prevent or slow the development of peri-implant infection, and subsequent failure.
Collapse
Affiliation(s)
- Yihan Li
- Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, ON M5G 1G6, Canada; (Y.L.); (C.A.S.)
| | - Cameron A. Stewart
- Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, ON M5G 1G6, Canada; (Y.L.); (C.A.S.)
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON M5S 3E2, Canada
| | - Yoav Finer
- Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, ON M5G 1G6, Canada; (Y.L.); (C.A.S.)
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON M5S 3E2, Canada
| |
Collapse
|
6
|
Wu N, Gao H, Wang X, Pei X. Surface Modification of Titanium Implants by Metal Ions and Nanoparticles for Biomedical Application. ACS Biomater Sci Eng 2023; 9:2970-2990. [PMID: 37184344 DOI: 10.1021/acsbiomaterials.2c00722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Implant surface modification can improve osseointegration and reduce peri-implant inflammation. Implant surfaces are modified with metals because of their excellent mechanical properties and significant functions. Metal surface modification is divided into metal ions and nanoparticle surface modification. These two methods function by adding a finishing metal to the surface of the implant, and both play a role in promoting osteogenic, angiogenic, and antibacterial properties. Based on this, the nanostructural surface changes confer stronger antibacterial and cellular affinity to the implant surface. The current paper reviews the forms, mechanisms, and applications of nanoparticles and metal ion modifications to provide a foundation for the surface modification of implants.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Piñera-Avellaneda D, Buxadera-Palomero J, Ginebra MP, Calero JA, Manero JM, Rupérez E. Surface competition between osteoblasts and bacteria on silver-doped bioactive titanium implant. BIOMATERIALS ADVANCES 2023; 146:213311. [PMID: 36709627 DOI: 10.1016/j.bioadv.2023.213311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
The rapid integration in the bone tissue and the prevention of bacterial infection are key for the success of the implant. In this regard, a silver (Ag)-doped thermochemical treatment that generate an Ag-doped calcium titanate layer on titanium (Ti) implants was previously developed by our group to improve the bone-bonding ability and provide antibacterial activity. In the present study, the biological and antibacterial potential of this coating has been further studied. In order to prove that the Ag-doped layer has an antibacterial effect with no detrimental effect on the bone cells, the behavior of osteoblast-like cells in terms of cell adhesion, morphology, proliferation and differentiation was evaluated, and the biofilm inhibition capacity was assessed. Moreover, the competition by the surface between cell and bacteria was carried out in two different co-culture methods. Finally, the treatment was applied to porous Ti implants to study in vivo osteointegration. The results show that the incorporation of Ag inhibits the biofilm formation and has no effect on the performance of osteoblast-like cells. Therefore, it can be concluded that the Ag-doped surface is capable of preventing bone bacterial infection and providing suitable osseointegration.
Collapse
Affiliation(s)
- David Piñera-Avellaneda
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain.
| | - Judit Buxadera-Palomero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain
| | - María-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
| | - José A Calero
- AMES GROUP, 08980 Sant Feliu de Llobregat, Barcelona, Spain
| | - José María Manero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain
| | - Elisa Rupérez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain
| |
Collapse
|
8
|
Heydariyan Z, Soofivand F, Dawi EA, Abd Al-Kahdum SA, Hameed NM, Salavati-Niasari M. A comprehensive review: Different approaches for encountering of bacterial infection of dental implants and improving their properties. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Faveri M, Lamunier L, de Figueiredo LC, Meza-Mauricio J, Scombatti de Souza SL, Bueno-Silva B. In vitro antimicrobial effect of titanium anodization on complex multispecies subgingival biofilm. BIOFOULING 2022; 38:656-662. [PMID: 35938693 DOI: 10.1080/08927014.2022.2070431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Anodization is a routine industrial galvanic method that produces a titanium oxide layer on the surface of titanium. Considering the possibility that this technique could influence microbial adsorption and colonization, this in vitro study was conducted to evaluate the impact of a process of anodization applied to a titanium surface on the microbial profile of multispecies subgingival biofilm. Titanium discs produced by using two different processes-conventional and Anodization-were divided into two groups: conventional titanium discs with machined surface (cpTi) Control Group and titanium discs with anodic oxidation treatment (anTi) Test Group. Subgingival biofilm composed of 33 species was formed on the titanium discs that were positioned vertically in 96-well plates, for 7 days. The proportions and the counts of microbial species were determined using a DNA-DNA hybridization technique, and data were evaluated using Mann-Whitney test (p < 0.05). Mean total bacterial counts were lower in Test Group in comparison with Control Group (p < 0.05). Nine bacterial species differed significantly, and were found in higher levels in Control Group in comparison with Test Group, including T. forsythia, E. nodatum, and F. periodonticum. In conclusion, titanium discs with anodization could alter the microbial profile of the biofilm formed around them. Further clinical studies should be conducted to confirm the clinical impact of these findings.
Collapse
Affiliation(s)
- Marcelo Faveri
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Livia Lamunier
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | | | - Jonathan Meza-Mauricio
- Professor, Department of Periodontology, School of Dentistry, Universidad Cientifica del Sur, Lima, Peru
| | - Sérgio Luís Scombatti de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Bruno Bueno-Silva
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| |
Collapse
|
10
|
Xu VW, Nizami MZI, Yin IX, Yu OY, Lung CYK, Chu CH. Application of Copper Nanoparticles in Dentistry. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:805. [PMID: 35269293 PMCID: PMC8912653 DOI: 10.3390/nano12050805] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
Nanoparticles based on metal and metallic oxides have become a novel trend for dental applications. Metal nanoparticles are commonly used in dentistry for their exclusive shape-dependent properties, including their variable nano-sizes and forms, unique distribution, and large surface-area-to-volume ratio. These properties enhance the bio-physio-chemical functionalization, antimicrobial activity, and biocompatibility of the nanoparticles. Copper is an earth-abundant inexpensive metal, and its nanoparticle synthesis is cost effective. Copper nanoparticles readily intermix and bind with other metals, ceramics, and polymers, and they exhibit physiochemical stability in the compounds. Hence, copper nanoparticles are among the commonly used metal nanoparticles in dentistry. Copper nanoparticles have been used to enhance the physical and chemical properties of various dental materials, such as dental amalgam, restorative cements, adhesives, resins, endodontic-irrigation solutions, obturation materials, dental implants, and orthodontic archwires and brackets. The objective of this review is to provide an overview of copper nanoparticles and their applications in dentistry.
Collapse
Affiliation(s)
| | - Mohammed Zahedul Islam Nizami
- Faculty of Dentistry, University of Hong Kong, Hong Kong 999077, China; (V.W.X.); (I.X.Y.); (O.Y.Y.); (C.Y.K.L.); (C.H.C.)
| | | | | | | | | |
Collapse
|
11
|
Godoy-Gallardo M, Eckhard U, Delgado LM, de Roo Puente YJ, Hoyos-Nogués M, Gil FJ, Perez RA. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioact Mater 2021; 6:4470-4490. [PMID: 34027235 PMCID: PMC8131399 DOI: 10.1016/j.bioactmat.2021.04.033] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/02/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial infection of implanted scaffolds may have fatal consequences and, in combination with the emergence of multidrug bacterial resistance, the development of advanced antibacterial biomaterials and constructs is of great interest. Since decades ago, metals and their ions had been used to minimize bacterial infection risk and, more recently, metal-based nanomaterials, with improved antimicrobial properties, have been advocated as a novel and tunable alternative. A comprehensive review is provided on how metal ions and ion nanoparticles have the potential to decrease or eliminate unwanted bacteria. Antibacterial mechanisms such as oxidative stress induction, ion release and disruption of biomolecules are currently well accepted. However, the exact antimicrobial mechanisms of the discussed metal compounds remain poorly understood. The combination of different metal ions and surface decorations of nanoparticles will lead to synergistic effects and improved microbial killing, and allow to mitigate potential side effects to the host. Starting with a general overview of antibacterial mechanisms, we subsequently focus on specific metal ions such as silver, zinc, copper, iron and gold, and outline their distinct modes of action. Finally, we discuss the use of these metal ions and nanoparticles in tissue engineering to prevent implant failure.
Collapse
Affiliation(s)
- Maria Godoy-Gallardo
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| | - Ulrich Eckhard
- Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Luis M. Delgado
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| | - Yolanda J.D. de Roo Puente
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| | - Mireia Hoyos-Nogués
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| | - F. Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| | - Roman A. Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| |
Collapse
|
12
|
Zhang Y, Gulati K, Li Z, Di P, Liu Y. Dental Implant Nano-Engineering: Advances, Limitations and Future Directions. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2489. [PMID: 34684930 PMCID: PMC8538755 DOI: 10.3390/nano11102489] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 12/27/2022]
Abstract
Titanium (Ti) and its alloys offer favorable biocompatibility, mechanical properties and corrosion resistance, which makes them an ideal material choice for dental implants. However, the long-term success of Ti-based dental implants may be challenged due to implant-related infections and inadequate osseointegration. With the development of nanotechnology, nanoscale modifications and the application of nanomaterials have become key areas of focus for research on dental implants. Surface modifications and the use of various coatings, as well as the development of the controlled release of antibiotics or proteins, have improved the osseointegration and soft-tissue integration of dental implants, as well as their antibacterial and immunomodulatory functions. This review introduces recent nano-engineering technologies and materials used in topographical modifications and surface coatings of Ti-based dental implants. These advances are discussed and detailed, including an evaluation of the evidence of their biocompatibility, toxicity, antimicrobial activities and in-vivo performances. The comparison between these attempts at nano-engineering reveals that there are still research gaps that must be addressed towards their clinical translation. For instance, customized three-dimensional printing technology and stimuli-responsive, multi-functional and time-programmable implant surfaces holds great promise to advance this field. Furthermore, long-term in vivo studies under physiological conditions are required to ensure the clinical application of nanomaterial-modified dental implants.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China;
| | - Karan Gulati
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia;
| | - Ze Li
- School of Stomatology, Chongqing Medical University, Chongqing 400016, China;
| | - Ping Di
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia;
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
13
|
Wang LJ, Ni XH, Zhang F, Peng Z, Yu FX, Zhang LB, Li B, Jiao Y, Li YK, Yang B, Zhu XY, Zhao QM. Osteoblast Response to Copper-Doped Microporous Coatings on Titanium for Improved Bone Integration. NANOSCALE RESEARCH LETTERS 2021; 16:146. [PMID: 34542720 PMCID: PMC8452820 DOI: 10.1186/s11671-021-03602-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/04/2021] [Indexed: 05/28/2023]
Abstract
Due to their excellent mechanical properties and good biocompatibility, titanium alloys have become a popular research topic in the field of medical metal implants. However, the surface of the titanium alloy does not exhibit biological activity, which may cause poor integration between the interface of the titanium implant and the interface of the bone tissue and subsequently may cause the implant to fall off. Therefore, surface biological inertness is one of the problems that titanium alloys must overcome to become an ideal orthopedic implant material. Surface modification can improve the biological properties of titanium, thereby enhancing its osseointegration effect. Copper is an essential trace element for the human body, can promote bone formation and plays an important role in maintaining the physiological structure and function of bone and bone growth and development. In this study, a microporous copper-titanium dioxide coating was prepared on the surface of titanium by microarc oxidation. Based on the evaluation of its surface characteristics, the adhesion, proliferation and differentiation of MC3T3-E1 cells were observed. A titanium rod was implanted into the rabbit femoral condyle, and the integration of the coating and bone tissue was evaluated. Our research results show that the microporous copper-titanium dioxide coating has a nearly three-dimensional porous structure, and copper is incorporated into the coating without changing the structure of the coating. In vitro experiments found that the coating can promote the adhesion, proliferation and differentiation of MC3T3-E1 cells. In vivo experiments further confirmed that the titanium copper-titanium dioxide microporous coating can promote the osseointegration of titanium implants. In conclusion, copper-titanium dioxide microporous coatings can be prepared by microarc oxidation, which can improve the biological activity and biocompatibility of titanium, promote new bone formation and demonstrate good osteoinductive properties. Therefore, the use of this coating in orthopedics has potential clinical application.
Collapse
Affiliation(s)
- Lai-Jie Wang
- Department of Orthopedics, Huai'an People's Hospital of Hongze District, Huai'an, 223100, Jiangsu, China
| | - Xiao-Hui Ni
- Department of Orthopedics, Dafeng People's Hospital, Yancheng, 224100, Jiangsu, China
| | - Fei Zhang
- Department of Orthopedics, Huai'an People's Hospital of Hongze District, Huai'an, 223100, Jiangsu, China
| | - Zhi Peng
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Fu-Xun Yu
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Lei-Bing Zhang
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Bo Li
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Yang Jiao
- Department of Orthopedics, Dafeng People's Hospital, Yancheng, 224100, Jiangsu, China
| | - Yan-Kun Li
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Bing Yang
- Department of Orthopedics, Dafeng People's Hospital, Yancheng, 224100, Jiangsu, China
| | - Xing-Yuan Zhu
- Department of Orthopedics, Dafeng People's Hospital, Yancheng, 224100, Jiangsu, China
| | - Quan-Ming Zhao
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
- Department of Orthopedics, Dafeng People's Hospital, Yancheng, 224100, Jiangsu, China.
| |
Collapse
|
14
|
Kang MS, Jang HJ, Lee SH, Lee JE, Jo HJ, Jeong SJ, Kim B, Han DW. Potential of Carbon-Based Nanocomposites for Dental Tissue Engineering and Regeneration. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5104. [PMID: 34501203 PMCID: PMC8434078 DOI: 10.3390/ma14175104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
While conventional dental implants focus on mechanical properties, recent advances in functional carbon nanomaterials (CNMs) accelerated the facilitation of functionalities including osteoinduction, osteoconduction, and osseointegration. The surface functionalization with CNMs in dental implants has emerged as a novel strategy for reinforcement and as a bioactive cue due to their potential for mechanical reinforcing, osseointegration, and antimicrobial properties. Numerous developments in the fabrication and biological studies of CNMs have provided various opportunities to expand their application to dental regeneration and restoration. In this review, we discuss the advances in novel dental implants with CNMs in terms of tissue engineering, including material combination, coating strategies, and biofunctionalities. We present a brief overview of recent findings and progression in the research to show the promising aspect of CNMs for dental implant application. In conclusion, it is shown that further development of surface functionalization with CNMs may provide innovative results with clinical potential for improved osseointegration after implantation.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.J.J.); (S.H.L.)
| | - Hee Jeong Jang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.J.J.); (S.H.L.)
| | - Seok Hyun Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.J.J.); (S.H.L.)
| | - Ji Eun Lee
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (J.E.L.); (H.J.J.)
| | - Hyo Jung Jo
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (J.E.L.); (H.J.J.)
| | | | - Bongju Kim
- Dental Life Science Research Institute/Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.J.J.); (S.H.L.)
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (J.E.L.); (H.J.J.)
| |
Collapse
|
15
|
Kreve S, Reis ACD. Bacterial adhesion to biomaterials: What regulates this attachment? A review. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:85-96. [PMID: 34188729 PMCID: PMC8215285 DOI: 10.1016/j.jdsr.2021.05.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/07/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022] Open
Abstract
Bacterial adhesion to the surface of dental materials play a significant role in infections. The factors that govern microbial attachment involves different types of physical-chemical interactions and biological processes. Studying bacterial adhesion makes it possible to understand the mechanisms involved in attachment and helps in the search for technologies that promote antibacterial surfaces.
Bacterial attachment to biomaterials is of great interest to the medical and dental field due to its impact on dental implants, dental prostheses, and others, leading to the need to introduce methods for biofilm control and mitigation of infections. Biofilm adhesion is a multifactorial process and involves characteristics relevant to the bacterial cell as well as biological, chemical, and physical properties relative to the surface of biomaterials. Bacteria encountered different environmental conditions during their growth and developed interspecies communication strategies, as well as various mechanisms to detect the environment and facilitate survival, such as chemical sensors or physical detection mechanisms. However, the factors that govern microbial attachment to surfaces are not yet fully understood. In order to understand how bacteria interact with surfaces, as well as to characterize the physical-chemical properties of bacteria adhesins, and to determine their interrelation with the adhesion to the substrate, in recent years new techniques of atomic force microscopy (AFM) have been developed and helped by providing quantitative results. Thus, the purpose of this review is to gather current studies about the factors that regulate microbial adhesion to surfaces in order to offer a guide to studies to obtain technologies that provide an antimicrobial surface.
Collapse
Affiliation(s)
- Simone Kreve
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, USP-University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andréa C Dos Reis
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, USP-University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
16
|
Benčina M, Resnik M, Starič P, Junkar I. Use of Plasma Technologies for Antibacterial Surface Properties of Metals. Molecules 2021; 26:1418. [PMID: 33808010 PMCID: PMC7961478 DOI: 10.3390/molecules26051418] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial infections of medical devices present severe problems connected with long-term antibiotic treatment, implant failure, and high hospital costs. Therefore, there are enormous demands for innovative techniques which would improve the surface properties of implantable materials. Plasma technologies present one of the compelling ways to improve metal's antibacterial activity; plasma treatment can significantly alter metal surfaces' physicochemical properties, such as surface chemistry, roughness, wettability, surface charge, and crystallinity, which all play an important role in the biological response of medical materials. Herein, the most common plasma treatment techniques like plasma spraying, plasma immersion ion implantation, plasma vapor deposition, and plasma electrolytic oxidation as well as novel approaches based on gaseous plasma treatment of surfaces are gathered and presented. The latest results of different surface modification approaches and their influence on metals' antibacterial surface properties are presented and critically discussed. The mechanisms involved in bactericidal effects of plasma-treated surfaces are discussed and novel results of surface modification of metal materials by highly reactive oxygen plasma are presented.
Collapse
Affiliation(s)
| | | | | | - Ita Junkar
- Department of Surface Engineering, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (M.B.); (M.R.); (P.S.)
| |
Collapse
|
17
|
Size-controlled, single-crystal CuO nanosheets and the resulting polyethylene–carbon nanotube nanocomposite as antimicrobial materials. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03112-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Xu N, Fu J, Zhao L, Chu PK, Huo K. Biofunctional Elements Incorporated Nano/Microstructured Coatings on Titanium Implants with Enhanced Osteogenic and Antibacterial Performance. Adv Healthc Mater 2020; 9:e2000681. [PMID: 32875743 DOI: 10.1002/adhm.202000681] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/02/2020] [Indexed: 12/20/2022]
Abstract
Bone fracture is prevalent among athletes and senior citizens and may require surgical insertion of bone implants. Titanium (Ti) and its alloys are widely used in orthopedics due to its high corrosion resistance, good biocompatibility, and modulus compatible with natural bone tissues. However, bone repair and regrowth are impeded by the insufficient intrinsic osteogenetic capability of Ti and Ti alloys and potential bacterial infection. The physicochemical properties of the materials and nano/microstructures on the implant surface are crucial for clinical success and loading with biofunctional elements such as Sr, Zn, Cu, Si, and Ag into nano/microstructured TiO2 coating has been demonstrated to enhance bone repair/regeneration and bacterial resistance of Ti implants. In this review, recent advances in biofunctional element-incorporated nano/microstructured coatings on Ti and Ti alloy implants are described and the prospects and limitations are discussed.
Collapse
Affiliation(s)
- Na Xu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jijiang Fu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Lingzhou Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kaifu Huo
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
19
|
Copper-containing bioactive glasses and glass-ceramics: From tissue regeneration to cancer therapeutic strategies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111741. [PMID: 33579436 DOI: 10.1016/j.msec.2020.111741] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Copper is one of the most used therapeutic metallic elements in biomedicine, ranging from antibacterial approaches to cancer theranostics. This element could be easily incorporated into different types of biomaterials; specifically, copper-doped bioactive glasses (BGs) provide great opportunities for biomedical engineers and clinicians as regards their excellent biocompatibility and regenerative potential. Although copper-incorporated BGs are mostly used in bone tissue engineering, accelerated soft tissue healing is achievable, too, with interesting potentials in wound treatment and skin repair. Copper can modulate the physico-chemical properties of BGs (e.g., reactivity with bio-fluids) and improve their therapeutic potential. Improving cell proliferation, promoting angiogenesis, reducing or even prohibiting bacterial growth are counted as prominent biological features of copper-doped BGs. Recent studies have also suggested the suitability of copper-doped BGs in cancer photothermal therapy (PTT). However, more research is needed to determine the extent to which copper-doped BGs are actually applicable for tissue engineering and regenerative medicine strategies in the clinic. Moreover, copper-doped BGs in combination with polymers may be considered in the future to produce relatively soft, pliable composites and printable inks for use in biofabrication.
Collapse
|
20
|
Abstract
Dental implants are widely used in the field of oral restoration, but there are still problems leading to implant failures in clinical application, such as failed osseointegration, marginal bone resorption, and peri-implantitis, which restrict the success rate of dental implants and patient satisfaction. Poor osseointegration and bacterial infection are the most essential reasons resulting in implant failure. To improve the clinical outcomes of implants, many scholars devoted to modifying the surface of implants, especially to preparing different physical and chemical modifications to improve the osseointegration between alveolar bone and implant surface. Besides, the bioactive-coatings to promote the adhesion and colonization of ossteointegration-related proteins and cells also aim to improve the osseointegration. Meanwhile, improving the anti-bacterial performance of the implant surface can obstruct the adhesion and activity of bacteria, avoiding the occurrence of inflammation related to implants. Therefore, this review comprehensively investigates and summarizes the modifying or coating methods of implant surfaces, and analyzes the ossteointegration ability and anti-bacterial characteristics of emerging functional coatings in published references.
Collapse
|