1
|
Abad-Contreras DE, Martínez-Ortiz AK, Martínez-López V, Laparra-Escareño H, Martínez-García FD, Pérez-Calixto D, Vazquez-Victorio G, Sepúlveda-Robles O, Rosas-Vargas H, Piña-Barba C, Rodríguez-López LA, Giraldo-Gomez DM, Hinojosa CA. Decellularization of human iliac artery: A vascular scaffold for peripheral repairs with human mesenchymal cells. Tissue Cell 2024; 93:102686. [PMID: 39724840 DOI: 10.1016/j.tice.2024.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
This work presents strong evidence supporting the use of decellularized human iliac arteries combined with adipose tissue-derived stem cells (hASCs) as a promising alternative for vascular tissue engineering, opening the path to future treatments for peripheral artery disease (PAD). PAD is a progressive condition with high rates of amputation and mortality due to ischemic damage and limited graft options. Traditional synthetic grafts often fail due to poor integration, while autologous grafts may be unsuitable for patients with compromised vascular health. This study explores the potential of decellularized human iliac arteries as scaffolds for vascular grafts, focusing on preserving extracellular matrix (ECM) ultrastructure while minimizing immunogenic response. A perfusion-based protocol with enzymatic and detergent agents effectively removed cellular material, resulting in scaffolds with preserved ECM architecture, including organized collagen and elastin fibers. To assess scaffold bioactivity, hASCs were seeded onto the decellularized ECM, demonstrating high viability. Structural assessments, including histological staining and mechanical testing, confirmed that decellularized arteries retained their hierarchical structure and exhibited increased stiffness, suggesting an adaptive realignment of ECM fibers. Thermal and ultrastructural analyses further showed that decellularized scaffolds maintained stability and integrity comparable to native tissue, underscoring their durability for clinical applications. The human iliac artery shows potential as a vascular scaffold due to its accessibility and the ability to support the viability of hASC. Future research will emphasize in vivo validation and strategies for functional recellularization to evaluate the clinical viability of these engineered vascular grafts.
Collapse
Affiliation(s)
- David E Abad-Contreras
- Laboratory for Biomaterials, Materials Research Institute, National Autonomous University of Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico.
| | - Ana K Martínez-Ortiz
- Laboratory for Biomaterials, Materials Research Institute, National Autonomous University of Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico; Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico
| | - Valentín Martínez-López
- Unit of Tissue Engineering, Cell Therapy and Regenerative Medicine, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Coapa, Arenal Tepepan, Calzada México-Xochimilco 289, Tlalpan, Ciudad de México, Mexico
| | - Hugo Laparra-Escareño
- National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán (INCMNSZ), Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico
| | - Francisco Drusso Martínez-García
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Daniel Pérez-Calixto
- Department of Physics, Faculty of Sciences UNAM, Circuito Exterior s/n Ciudad Universitaria, Av. Universidad 3000, Alcaldía Coyoacán, CDMX CP 04510, Mexico; Subdirectorate of Population Genomics. National Institute of Genomic Medicine, Periférico Sur No. 4809, Col. Arenal Tepepan, Alcaldía Tlalpan, CDMX CP 1461, Mexico
| | - Genaro Vazquez-Victorio
- Department of Physics, Faculty of Sciences UNAM, Circuito Exterior s/n Ciudad Universitaria, Av. Universidad 3000, Alcaldía Coyoacán, CDMX CP 04510, Mexico
| | - Omar Sepúlveda-Robles
- Medical Research Unit in Human Genetics, UMAE Pediatric Hospital, "Siglo XXI" National Medical Center, Mexican Social Security Institute (IMSS), CDMX, Mexico
| | - Haydeé Rosas-Vargas
- Medical Research Unit in Human Genetics, UMAE Pediatric Hospital, "Siglo XXI" National Medical Center, Mexican Social Security Institute (IMSS), CDMX, Mexico
| | - Cristina Piña-Barba
- Laboratory for Biomaterials, Materials Research Institute, National Autonomous University of Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico
| | - Leonardo A Rodríguez-López
- National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán (INCMNSZ), Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico
| | - David M Giraldo-Gomez
- Department of Cell and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Circuito Interior, Edificio "A" 3°piso, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico; Microscopy Core Facility, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Circuito Interior, Edificio "A" planta baja, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico
| | - Carlos A Hinojosa
- National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán (INCMNSZ), Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico
| |
Collapse
|
2
|
Goushki MA, Kharat Z, Kehtari M, Sohi AN, Ahvaz HH, Rad I, HosseinZadeh S, Kouhkan F, Kabiri M. Applications of extraembryonic tissue-derived cells in vascular tissue regeneration. Stem Cell Res Ther 2024; 15:205. [PMID: 38982541 PMCID: PMC11234723 DOI: 10.1186/s13287-024-03784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Vascular tissue engineering is a promising approach for regenerating damaged blood vessels and developing new therapeutic approaches for heart disease treatment. To date, different sources of cells have been recognized that offer assistance within the recovery of heart supply routes and veins with distinctive capacities and are compelling for heart regeneration. However, some challenges still remain that need to be overcome to establish the full potential application of these cells. In this paper, we review the different cell sources used for vascular tissue engineering, focusing on extraembryonic tissue-derived cells (ESCs), and elucidate their roles in cardiovascular disease. In addition, we highlight the intricate interplay between mechanical and biochemical factors in regulating mesenchymal stem cell (MSC) differentiation, offering insights into optimizing their application in vascular tissues.
Collapse
Affiliation(s)
- Mehdi Amiri Goushki
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 14395-1561, Iran
| | - Zahra Kharat
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 14395-1561, Iran
| | - Mousa Kehtari
- School of Biology, College of Sciences, University of Tehran, Tehran, 1417614411, Iran
| | - Alireza Naderi Sohi
- National Institute of Genetic Engineering and Biotechnology, Tehran, 1497716316, Iran
| | | | - Iman Rad
- Stem Cell Technology Research Center, Tehran, 15856-36473, Iran
| | - Simzar HosseinZadeh
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kouhkan
- Stem Cell Technology Research Center, Tehran, 15856-36473, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| |
Collapse
|
3
|
Kang C, Yang H. The journey of decellularized vessel: from laboratory to operating room. Front Bioeng Biotechnol 2024; 12:1413518. [PMID: 38983603 PMCID: PMC11231200 DOI: 10.3389/fbioe.2024.1413518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Over the past few decades, there has been a remarkable advancement in the field of transplantation. But the shortage of donors is still an urgent problem that requires immediate attention. As with xenotransplantation, bioengineered organs are promising solutions to the current shortage situation. And decellularization is a unique technology in organ-bioengineering. However, at present, there is no unified decellularization method for different tissues, and there is no gold-standard for evaluating decellularization efficiency. Meanwhile, recellularization, re-endothelialization and modification are needed to form transplantable organs. With this mind, we can start with decellularization and re-endothelialization or modification of small blood vessels, which would serve to address the shortage of small-diameter vessels while simultaneously gathering the requisite data and inspiration for further recellularization of the whole organ-scale vascular network. In this review, we collect the related experiments of decellularization and post-decellularization approaches of small vessels in recent years. Subsequently, we summarize the experience in relation to the decellularization and post-decellularization combinations, and put forward obstacle we face and possible solutions.
Collapse
Affiliation(s)
- Chenbin Kang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongji Yang
- Organ Transplant Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province and Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Zhang B, Qin J. LINC00659 exacerbates endothelial progenitor cell dysfunction in deep vein thrombosis of the lower extremities by activating DNMT3A-mediated FGF1 promoter methylation. Thromb J 2023; 21:24. [PMID: 36890543 PMCID: PMC9996960 DOI: 10.1186/s12959-023-00462-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 03/10/2023] Open
Abstract
It has been shown that long non-coding RNA (lncRNA) LINC00659 was markedly upregulated in the peripheral blood of patients with deep venous thrombosis (DVT). However, the function of LINC00659 in lower extremity DVT (LEDVT) remains to be largely unrevealed. A total of 30 inferior vena cava (IVC) tissue samples and peripheral blood (60 ml per subject) were obtained from LEDVT patients (n = 15) and healthy donors (n = 15), and then LINC00659 expression was detected by RT-qPCR. The results displayed that LINC00659 is upregulated in IVC tissues and isolated endothelial group cells (EPCs) of patients with LEDVT. LINC00659 knock-down promoted the proliferation, migration, and angiogenesis ability of EPCs, while an pcDNA-eukaryotic translation initiation factor 4A3 (EIF4A3), a EIF4A3 overexpression vector, or fibroblast growth factor 1 (FGF1) small interfering RNA (siRNA) combined with LINC00659 siRNA could not enhance this effect. Mechanistically, LINC00659 bound with EIF4A3 promoter to upregulated EIF4A3 expression. Besides, EIF4A3 could facilitate FGF1 methylation and its downregulated expression by recruiting DNA methyltransferases 3A (DNMT3A) to the FGF1 promoter region. Additionally, LINC00659 inhibition could alleviate LEDVT in mice. In summary, the data indicated the roles of LINC00659 in the pathogenesis of LEDVT, and the LINC00659/EIF4A3/FGF1 axis could be a novel therapeutic target for the treatment of LEDVT.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Peripheral Vessel, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China.
| | - Jie Qin
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710061, Shanxi, China
| |
Collapse
|
5
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
6
|
Ahmed E, Saleh T, Xu M. Recellularization of Native Tissue Derived Acellular Scaffolds with Mesenchymal Stem Cells. Cells 2021; 10:cells10071787. [PMID: 34359955 PMCID: PMC8304639 DOI: 10.3390/cells10071787] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
The functionalization of decellularized scaffolds is still challenging because of the recellularization-related limitations, including the finding of the most optimal kind of cell(s) and the best way to control their distribution within the scaffolds to generate native mimicking tissues. That is why researchers have been encouraged to study stem cells, in particular, mesenchymal stem cells (MSCs), as alternative cells to repopulate and functionalize the scaffolds properly. MSCs could be obtained from various sources and have therapeutic effects on a wide range of inflammatory/degenerative diseases. Therefore, in this mini-review, we will discuss the benefits using of MSCs for recellularization, the factors affecting their efficiency, and the drawbacks that may need to be overcome to generate bioengineered transplantable organs.
Collapse
Affiliation(s)
- Ebtehal Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt;
| | - Tarek Saleh
- Department of Animal Surgery, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt;
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Correspondence: or ; Tel.: +1-513-558-4725; Fax: +1-513-558-2141
| |
Collapse
|